OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 4 — Apr. 1, 2014
  • pp: 1173–1189

Comparison of adaptive optics scanning light ophthalmoscopic fluorescein angiography and offset pinhole imaging

Toco Y. P. Chui, Michael Dubow, Alexander Pinhas, Nishit Shah, Alexander Gan, Rishard Weitz, Yusufu N. Sulai, Alfredo Dubra, and Richard B. Rosen  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 4, pp. 1173-1189 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2285 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent advances to the adaptive optics scanning light ophthalmoscope (AOSLO) have enabled finer in vivo assessment of the human retinal microvasculature. AOSLO confocal reflectance imaging has been coupled with oral fluorescein angiography (FA), enabling simultaneous acquisition of structural and perfusion images. AOSLO offset pinhole (OP) imaging combined with motion contrast post-processing techniques, are able to create a similar set of structural and perfusion images without the use of exogenous contrast agent. In this study, we evaluate the similarities and differences of the structural and perfusion images obtained by either method, in healthy control subjects and in patients with retinal vasculopathy including hypertensive retinopathy, diabetic retinopathy, and retinal vein occlusion. Our results show that AOSLO OP motion contrast provides perfusion maps comparable to those obtained with AOSLO FA, while AOSLO OP reflectance images provide additional information such as vessel wall fine structure not as readily visible in AOSLO confocal reflectance images. AOSLO OP offers a non-invasive alternative to AOSLO FA without the need for any exogenous contrast agent.

© 2014 Optical Society of America

OCIS Codes
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4470) Medical optics and biotechnology : Ophthalmology
(290.4210) Scattering : Multiple scattering
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Ophthalmology Applications

Original Manuscript: December 4, 2013
Revised Manuscript: February 18, 2014
Manuscript Accepted: February 18, 2014
Published: March 13, 2014

Toco Y. P. Chui, Michael Dubow, Alexander Pinhas, Nishit Shah, Alexander Gan, Rishard Weitz, Yusufu N. Sulai, Alfredo Dubra, and Richard B. Rosen, "Comparison of adaptive optics scanning light ophthalmoscopic fluorescein angiography and offset pinhole imaging," Biomed. Opt. Express 5, 1173-1189 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Kylstra, J. C. Brown, G. J. Jaffe, T. A. Cox, R. Gallemore, C. M. Greven, J. G. Hall, and D. E. Eifrig, “The importance of fluorescein angiography in planning laser treatment of diabetic macular edema,” Ophthalmology106(11), 2068–2073 (1999). [CrossRef] [PubMed]
  2. L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology93(5), 611–617 (1986). [CrossRef] [PubMed]
  3. F. J. Ascaso, M. T. Tiestos, J. Navales, F. Iturbe, A. Palomar, and J. I. Ayala, “Fatal acute myocardial infarction after intravenous fluorescein angiography,” Retina13(3), 238–239 (1993). [CrossRef] [PubMed]
  4. V. Fineschi, G. Monasterolo, R. Rosi, and E. Turillazzi, “Fatal anaphylactic shock during a fluorescein angiography,” Forensic Sci. Int.100(1-2), 137–142 (1999). [CrossRef] [PubMed]
  5. A. S. L. Kwan, C. Barry, I. L. McAllister, and I. Constable, “Fluorescein angiography and adverse drug reactions revisited: the Lions Eye experience,” Clin. Experiment. Ophthalmol.34(1), 33–38 (2006). [CrossRef] [PubMed]
  6. D. C. Kalogeromitros, M. P. Makris, X. S. Aggelides, A. I. Mellios, F. C. Giannoula, K. A. Sideri, A. A. Rouvas, and P. G. Theodossiadis, “Allergy skin testing in predicting adverse reactions to fluorescein: a prospective clinical study,” Acta Ophthalmol. (Copenh.)89(5), 480–483 (2011). [CrossRef] [PubMed]
  7. K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D. Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci.51(11), 5864–5869 (2010). [CrossRef] [PubMed]
  8. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express14(16), 7144–7158 (2006). [CrossRef] [PubMed]
  9. D. Scoles, D. C. Gray, J. J. Hunter, R. Wolfe, B. P. Gee, Y. Geng, B. D. Masella, R. T. Libby, S. Russell, D. R. Williams, and W. H. Merigan, “In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison,” BMC Ophthalmol.9(1), 9 (2009). [CrossRef] [PubMed]
  10. J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci.51(3), 1691–1698 (2010). [CrossRef] [PubMed]
  11. J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci.52(12), 9257–9266 (2011). [CrossRef] [PubMed]
  12. P. Bedggood and A. Metha, “Direct visualization and characterization of erythrocyte flow in human retinal capillaries,” Biomed. Opt. Express3(12), 3264–3277 (2012). [CrossRef] [PubMed]
  13. T. Y. Chui, Z. Zhong, H. Song, and S. A. Burns, “Foveal avascular zone and its relationship to foveal pit shape,” Optom. Vis. Sci.89(5), 602–610 (2012). [CrossRef] [PubMed]
  14. T. Y. Chui, D. A. Vannasdale, and S. A. Burns, “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express3(10), 2537–2549 (2012). [CrossRef] [PubMed]
  15. J. Tam, K. P. Dhamdhere, P. Tiruveedhula, B. J. Lujan, R. N. Johnson, M. A. Bearse, A. J. Adams, and A. Roorda, “Subclinical capillary changes in non-proliferative diabetic retinopathy,” Optom. Vis. Sci.89(5), E692–E703 (2012). [CrossRef] [PubMed]
  16. T. Y. Chui, T. J. Gast, and S. A. Burns, “Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.54(10), 7115–7124 (2013). [CrossRef] [PubMed]
  17. M. Lombardo, M. Parravano, S. Serrao, P. Ducoli, M. Stirpe, and G. Lombardo, “Analysis of Retinal Capillaries in Patients with Type 1 Diabetes and Nonproliferative Diabetic Retinopathy Using Adaptive Optics Imaging,” Retina33(8), 1630–1639 (2013). [CrossRef] [PubMed]
  18. A. Pinhas, M. Dubow, N. Shah, T. Y. Chui, D. Scoles, Y. N. Sulai, R. Weitz, J. B. Walsh, J. Carroll, A. Dubra, and R. B. Rosen, “In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography,” Biomed. Opt. Express4(8), 1305–1317 (2013). [CrossRef] [PubMed]
  19. M. Dubow, A. Pinhas, N. Shah, R. F. Cooper, A. Gan, R. C. Gentile, V. L. Hendrix, Y. N. Sulai, J. Carroll, T. Y. Chui, J. Walsh, R. Weitz, A. Dubra, and R. B. Rosen, “Classification of Human Retinal Microaneurysms using Adaptive Optics Scanning Light Ophthalmoscope Fluorescein Angiography,” Invest. Ophthalmol. Vis. Sci.2014, 13122 (2014). [CrossRef] [PubMed]
  20. A. P. Watson and E. S. Rosen, “Oral fluorescein angiography: reassessment of its relative safety and evaluation of optimum conditions with use of capsules,” Br. J. Ophthalmol.74(8), 458–461 (1990). [CrossRef] [PubMed]
  21. T. Hara, M. Inami, and T. Hara, “Efficacy and safety of fluorescein angiography with orally administered sodium fluorescein,” Am. J. Ophthalmol.126(4), 560–564 (1998). [CrossRef] [PubMed]
  22. D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express2(6), 1504–1513 (2011). [CrossRef] [PubMed]
  23. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express19(2), 1217–1227 (2011). [CrossRef] [PubMed]
  24. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express16(15), 11438–11452 (2008). [CrossRef] [PubMed]
  25. C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.26(8), 1124–1132 (1985). [PubMed]
  26. S. Wolf, O. Arend, H. Toonen, B. Bertram, F. Jung, and M. Reim, “Retinal capillary blood flow measurement with a scanning laser ophthalmoscope. Preliminary results,” Ophthalmology98(6), 996–1000 (1991). [CrossRef] [PubMed]
  27. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett.25(19), 1448–1450 (2000). [CrossRef] [PubMed]
  28. G. Smith and D. A. Atchison, The eye and visual optical instruments, 1st ed. (Cambridge University Press, 1997), Vol. Cambridge.
  29. A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(6), 1757–1768 (2011). [CrossRef] [PubMed]
  30. “American National Standard Institute, American National Standard for the Safe Use of lasers, ANSI Z136.1-2007 (ANSI, New York, 2007).”
  31. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express14(16), 7144–7158 (2006). [CrossRef] [PubMed]
  32. J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci.49(8), 3715–3729 (2008). [CrossRef] [PubMed]
  33. J. J. Hunter, J. I. Morgan, W. H. Merigan, D. H. Sliney, J. R. Sparrow, and D. R. Williams, “The susceptibility of the retina to photochemical damage from visible light,” Prog. Retin. Eye Res.31(1), 28–42 (2012). [CrossRef] [PubMed]
  34. A. C. Bird and R. A. Weale, “On the retinal vasculature of the human fovea,” Exp. Eye Res.19(5), 409–417 (1974). [CrossRef] [PubMed]
  35. G. H. Bresnick, R. Condit, S. Syrjala, M. Palta, A. Groo, and K. Korth, “Abnormalities of the foveal avascular zone in diabetic retinopathy,” Arch. Ophthalmol.102(9), 1286–1293 (1984). [CrossRef] [PubMed]
  36. I. Arganda-Carreras, C. Ó. Sánchez Sorzano, R. Marabini, J. M. Carazo, C. Ortiz-de Solorzano, and J. Kybic, “Consistent and elastic registration of histological sections using vector-spline regularization, ser. Lecture Notes in Computer Science,” Computer Vision Approaches to Medical Image Analysis4241, 85–95 (2006).
  37. R. S. Weinhaus, J. M. Burke, F. C. Delori, and D. M. Snodderly, “Comparison of fluorescein angiography with microvascular anatomy of macaque retinas,” Exp. Eye Res.61(1), 1–16 (1995). [CrossRef] [PubMed]
  38. J. Moore, S. Bagley, G. Ireland, D. McLeod, and M. E. Boulton, “Three dimensional analysis of microaneurysms in the human diabetic retina,” J. Anat.194(1), 89–100 (1999). [CrossRef] [PubMed]
  39. A. W. Stitt, T. A. Gardiner, and D. B. Archer, “Histological and ultrastructural investigation of retinal microaneurysm development in diabetic patients,” Br. J. Ophthalmol.79(4), 362–367 (1995). [CrossRef] [PubMed]
  40. S. H. Sarks, D. Van Driel, L. Maxwell, and M. Killingsworth, “Softening of drusen and subretinal neovascularization,” Trans. Ophthalmol. Soc. U. K.100(3), 414–422 (1980). [PubMed]
  41. H. Miller, B. Miller, and S. J. Ryan, “Newly-formed subretinal vessels. Fine structure and fluorescein leakage,” Invest. Ophthalmol. Vis. Sci.27(2), 204–213 (1986). [PubMed]
  42. N. M. Bressler, S. B. Bressler, and S. L. Fine, “Age-related macular degeneration,” Surv. Ophthalmol.32(6), 375–413 (1988). [CrossRef] [PubMed]
  43. A. E. Elsner, Q. Zhou, F. Beck, P. E. Tornambe, S. A. Burns, J. J. Weiter, and A. W. Dreher, “Detecting AMD with multiply scattered light tomography,” Int. Ophthalmol.23(4/6), 245–250 (2001). [CrossRef] [PubMed]
  44. A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res.36(1), 191–205 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3960 KB)     
» Media 2: AVI (3532 KB)     
» Media 3: AVI (3018 KB)     
» Media 4: AVI (3986 KB)     
» Media 5: AVI (3960 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited