OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 4 — Apr. 1, 2014
  • pp: 1203–1216

Clinical superficial Raman probe aimed for epithelial tumor detection: Phantom model results

Michelle Agenant, Matthijs Grimbergen, Ronald Draga, Eric Marple, Ruud Bosch, and Christiaan van Swol  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 4, pp. 1203-1216 (2014)
http://dx.doi.org/10.1364/BOE.5.001203


View Full Text Article

Enhanced HTML    Acrobat PDF (1699 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: A novel clinical Raman probe for sampling superficial tissue to improve in vivo detection of epithelial malignancies is compared to a non-superficial probe regarding depth response function and signal-to-noise ratio. Depth response measurements were performed in a phantom tissue model consisting of a polyethylene terephthalate disc in an 20%-Intralipid® solution. Sampling ranges of 0-200 and 0-300 μm were obtained for the superficial and non-superficial probe, respectively. The mean signal-to-noise ratio of the superficial probe increased by a factor of 2 compared with the non-superficial probe. This newly developed superficial Raman probe is expected to improve epithelial cancer detection in vivo.

© 2014 Optical Society of America

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Clinical Instrumentation

History
Original Manuscript: January 28, 2014
Revised Manuscript: March 10, 2014
Manuscript Accepted: March 10, 2014
Published: March 17, 2014

Citation
Michelle Agenant, Matthijs Grimbergen, Ronald Draga, Eric Marple, Ruud Bosch, and Christiaan van Swol, "Clinical superficial Raman probe aimed for epithelial tumor detection: Phantom model results," Biomed. Opt. Express 5, 1203-1216 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-4-1203


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer128(11), 2673–2680 (2011). [CrossRef] [PubMed]
  2. P. Crow, J. S. Uff, J. A. Farmer, M. P. Wright, and N. Stone, “The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro,” BJU Int.93(9), 1232–1236 (2004). [CrossRef] [PubMed]
  3. R. O. Draga, M. C. Grimbergen, P. L. Vijverberg, C. F. van Swol, T. G. Jonges, J. A. Kummer, and J. L. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem.82(14), 5993–5999 (2010). [CrossRef] [PubMed]
  4. E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J. Biophotonics2(1-2), 81–90 (2009). [CrossRef] [PubMed]
  5. A. Molckovsky, L. M. Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, “Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps,” Gastrointest. Endosc.57(3), 396–402 (2003). [CrossRef] [PubMed]
  6. G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer94(10), 1460–1464 (2006). [CrossRef] [PubMed]
  7. J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol.54(23), 7077–7087 (2009). [CrossRef] [PubMed]
  8. Y. Hattori, Y. Komachi, T. Asakura, T. Shimosegawa, G. Kanai, H. Tashiro, and H. Sato, “In vivo Raman study of the living rat esophagus and stomach using a micro-Raman probe under an endoscope,” Appl. Spectrosc.61(6), 579–584 (2007). [CrossRef] [PubMed]
  9. Z. Huang, S. K. Teh, W. Zheng, J. Mo, K. Lin, X. Shao, K. Y. Ho, M. Teh, and K. G. Yeoh, “Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy,” Opt. Lett.34(6), 758–760 (2009). [CrossRef] [PubMed]
  10. A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol.68(3), 427–431 (1998). [CrossRef] [PubMed]
  11. J. Mo, W. Zheng, J. J. Low, J. Ng, A. Ilancheran, and Z. Huang, “High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia,” Anal. Chem.81(21), 8908–8915 (2009). [CrossRef] [PubMed]
  12. J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Optical fiber probe for biomedical Raman spectroscopy,” Appl. Opt.43(3), 542–554 (2004). [CrossRef] [PubMed]
  13. M. G. Shim, B. Wilson, E. Marple, and M. Wach, “Study of Fiber-Optic probes for in Vivo Medical Raman Spectroscopy,” Appl. Spectrosc.53(6), 619–627 (1999). [CrossRef]
  14. Marple, E. Filtered Fiber Optic Probe. 12/630,640[US 8,175,432 B2], 0–11. 2012. Florida/USA. 12–3-2009. Ref Type: Patent.
  15. P. Di Ninni, F. Martelli, and G. Zaccanti, “Effect of dependent scattering on the optical properties of Intralipid tissue phantoms,” Biomed. Opt. Express2(8), 2265–2278 (2011). [CrossRef] [PubMed]
  16. P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011). [CrossRef] [PubMed]
  17. C. A. Thompson, J. S. Reynolds, K. J. Webb, F. P. Laplant, and D. Ben-Amotz, “Raman spectroscopic studies of diamond in Intralipid,” Opt. Lett.20(10), 1195–1197 (1995). [CrossRef] [PubMed]
  18. H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  19. C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc.57(11), 1363–1367 (2003). [CrossRef] [PubMed]
  20. R. L. McCreery, “Signal-to-noise in Raman spectroscopy,” in Raman Spectroscopy for Chemical Analysis (Wiley, 2000), p. 49.
  21. J. Mo, W. Zheng, and Z. Huang, “Fiber-optic Raman probe couples ball lens for depth-selected Raman measurements of epithelial tissue,” Biomed. Opt. Express1(1), 17–30 (2010). [CrossRef] [PubMed]
  22. J. Wang, M. S. Bergholt, W. Zheng, and Z. Huang, “Development of a beveled fiber-optic confocal Raman probe for enhancing in vivo epithelial tissue Raman measurements at endoscopy,” Opt. Lett.38(13), 2321–2323 (2013). [CrossRef] [PubMed]
  23. M. G. Shim and B. Wilson, “Development of an In Vivo Raman Spectroscopic System for Diagnostic Applications,” J. Raman Spectros.28(2-3), 131–142 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited