OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 4 — Apr. 1, 2014
  • pp: 1233–1249

Imaging the eye fundus with real-time en-face spectral domain optical coherence tomography

Adrian Bradu and Adrian Gh. Podoleanu  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 4, pp. 1233-1249 (2014)
http://dx.doi.org/10.1364/BOE.5.001233


View Full Text Article

Enhanced HTML    Acrobat PDF (4832 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Real-time display of processed en-face spectral domain optical coherence tomography (SD-OCT) images is important for diagnosis. However, due to many steps of data processing requirements, such as Fast Fourier transformation (FFT), data re-sampling, spectral shaping, apodization, zero padding, followed by software cut of the 3D volume acquired to produce an en-face slice, conventional high-speed SD-OCT cannot render an en-face OCT image in real time. Recently we demonstrated a Master/Slave (MS)-OCT method that is highly parallelizable, as it provides reflectivity values of points at depth within an A-scan in parallel. This allows direct production of en-face images. In addition, the MS-OCT method does not require data linearization, which further simplifies the processing. The computation in our previous paper was however time consuming. In this paper we present an optimized algorithm that can be used to provide en-face MS-OCT images much quicker. Using such an algorithm we demonstrate around 10 times faster production of sets of en-face OCT images than previously obtained as well as simultaneous real-time display of up to 4 en-face OCT images of 200 × 200 pixels2 from the fovea and the optic nerve of a volunteer. We also demonstrate 3D and B-scan OCT images obtained from sets of MS-OCT C-scans, i.e. with no FFT and no intermediate step of generation of A-scans.

© 2014 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.0110) Medical optics and biotechnology : Imaging systems
(100.3175) Image processing : Interferometric imaging

ToC Category:
Image Processing

History
Original Manuscript: January 17, 2014
Revised Manuscript: March 14, 2014
Manuscript Accepted: March 17, 2014
Published: March 19, 2014

Citation
Adrian Bradu and Adrian Gh. Podoleanu, "Imaging the eye fundus with real-time en-face spectral domain optical coherence tomography," Biomed. Opt. Express 5, 1233-1249 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-4-1233


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Taplin, A. Gh Podoleanu, D. J. Webb, and D. A. Jackson, “Displacement sensor using channeled spectrum dispersed on a linear CCD array,” Electron. Lett.29, 896–897 (1993).
  2. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002). [CrossRef] [PubMed]
  3. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997). [CrossRef] [PubMed]
  4. H. Lim, M. Mujat, C. Kerbage, E. C. W. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, “High-speed imaging of human retina in vivo with swept-source optical coherence tomography,” Opt. Express14(26), 12902–12908 (2006). [CrossRef] [PubMed]
  5. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  6. K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express18(11), 11772–11784 (2010). [CrossRef] [PubMed]
  7. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett.19(8), 590–592 (1994). [CrossRef] [PubMed]
  8. A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Coherence imaging by use of a Newton rings sampling function,” Opt. Lett.21(21), 1789–1791 (1996). [CrossRef] [PubMed]
  9. A. Gh Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. Fitzke, “Transverse and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt.3, 12–20 (1998). [CrossRef] [PubMed]
  10. A. G. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res.27(4), 464–499 (2008). [CrossRef] [PubMed]
  11. R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, P. Laissue, G. M. Dobre, and A. G. Podoleanu, “Multidimensional en-face OCT imaging of the retina,” Opt. Express17(5), 4112–4133 (2009). [CrossRef] [PubMed]
  12. M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, “Imaging the human retina and cone mosaic in vivo with PS-OCT,” Proc. SPIE6429, 64290T (2007). [CrossRef]
  13. K. Wiesauer, M. Pircher, E. Götzinger, S. Bauer, R. Engelke, G. Ahrens, G. Grützner, C. Hitzenberger, and D. Stifter, “En-face scanning optical coherence tomography with ultra-high resolution for material investigation,” Opt. Express13(3), 1015–1024 (2005). [CrossRef] [PubMed]
  14. H. Liang, M. G. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography - a novel application of non-invasive imaging to art conservation,” Opt. Express13(16), 6133–6144 (2005). [CrossRef] [PubMed]
  15. D. C. Adler, C. Zhou, T.-H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt. Express17(2), 784–796 (2009). [CrossRef] [PubMed]
  16. S. Jiao, C. Wu, R. W. Knighton, G. Gregori, and C. A. Puliafito, “Registration of high-density cross sectional images to the fundus image in spectral-domain ophthalmic optical coherence tomography,” Opt. Express14(8), 3368–3376 (2006). [CrossRef] [PubMed]
  17. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008). [CrossRef] [PubMed]
  18. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010). [CrossRef] [PubMed]
  19. S. Van der Jeught, A. Bradu, and A. G. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt.15(3), 030511 (2010). [CrossRef] [PubMed]
  20. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008). [CrossRef] [PubMed]
  21. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express13(2), 444–452 (2005). [CrossRef] [PubMed]
  22. V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci.49(11), 5103–5110 (2008). [CrossRef] [PubMed]
  23. https://www.sog-sso.ch/fileadmin/SOG-Dokumente/Veranstaltungen/en-face-OCT-Dec-14-2013.pdf
  24. Clinical en-face OCT atlas, B. Lambruso, D. Huang, A. Romano, M. Rispoli, and G. Coscas Ed., Jaypee Brothers, (2012).
  25. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett.33(21), 2556–2558 (2008). [CrossRef] [PubMed]
  26. Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt.18(2), 026002 (2013). [CrossRef] [PubMed]
  27. J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt.15(2), 026014 (2010). [CrossRef] [PubMed]
  28. K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express18(22), 23472–23487 (2010). [CrossRef] [PubMed]
  29. K. Zhang and J. U. Kang, “Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance,” Biomed. Opt. Express2(4), 764–770 (2011). [CrossRef] [PubMed]
  30. J. U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W. P. A. Lee, G. Brandacher, and P. L. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt.17(8), 081403 (2012). [CrossRef] [PubMed]
  31. M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. Gorczynska, D. Bukowska, M. Wojtkowski, and P. Targowski, “Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units,” J. Biomed. Opt.17(10), 100502 (2012). [CrossRef] [PubMed]
  32. A. Gh. Podoleanu, and A. Bradu, “Master-slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography,” Opt. Express21, 19324.-193238 (2013).
  33. A. Bradu and A. G. Podoleanu, “Calibration-free B-scan images produced by master/slave optical coherence tomography,” Opt. Lett.39(3), 450–453 (2014). [CrossRef] [PubMed]
  34. H. S. Carslaw, Introduction to the Theory of Fourier's Series and Integrals (Macmillan, 1921).
  35. B. P. Flannery, W. H. Press, S. A. Teukolsky, and W. Vetterling, Numerical Recipes in C (Cambridge University Press, 1992).
  36. J. Lewis, “Fast template matching,” Vision Interface95, 120–123 (1995).
  37. A. Goshtasby, S. H. Gage, and J. F. Bartholic, “A two-stage cross correlation approach to template matching,” IEEE Trans. Pattern Anal. Mach. Intell.6(3), 374–378 (1984). [CrossRef] [PubMed]
  38. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods9(7), 671–675 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (4683 KB)     
» Media 2: MOV (9545 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited