OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 5 — May. 1, 2014
  • pp: 1428–1444

Towards simultaneous Talbot bands based optical coherence tomography and scanning laser ophthalmoscopy imaging

Manuel J. Marques, Adrian Bradu, and Adrian Gh. Podoleanu  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 5, pp. 1428-1444 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (5617 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a Talbot bands-based optical coherence tomography (OCT) system capable of producing longitudinal B-scan OCT images and en-face scanning laser ophthalmoscopy (SLO) images of the human retina in-vivo. The OCT channel employs a broadband optical source and a spectrometer. A gap is created between the sample and reference beams while on their way towards the spectrometer’s dispersive element to create Talbot bands. The spatial separation of the two beams facilitates collection by an SLO channel of optical power originating exclusively from the retina, deprived from any contribution from the reference beam. Three different modes of operation are presented, constrained by the minimum integration time of the camera used in the spectrometer and by the galvo-scanners’ scanning rate: (i) a simultaneous acquisition mode over the two channels, useful for small size imaging, that conserves the pixel-to-pixel correspondence between them; (ii) a hybrid sequential mode, where the system switches itself between the two regimes and (iii) a sequential “on-demand” mode, where the system can be used in either OCT or SLO regimes for as long as required. The two sequential modes present varying degrees of trade-off between pixel-to-pixel correspondence and independent full control of parameters within each channel. Images of the optic nerve and fovea regions obtained in the simultaneous (i) and in the hybrid sequential mode (ii) are presented.

© 2014 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.4190) Imaging systems : Multiple imaging
(110.4500) Imaging systems : Optical coherence tomography
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices

ToC Category:
Optical Coherence Tomography

Original Manuscript: February 26, 2014
Revised Manuscript: March 31, 2014
Manuscript Accepted: April 1, 2014
Published: April 4, 2014

Manuel J. Marques, Adrian Bradu, and Adrian Gh. Podoleanu, "Towards simultaneous Talbot bands based optical coherence tomography and scanning laser ophthalmoscopy imaging," Biomed. Opt. Express 5, 1428-1444 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Mitsui, “Dynamic Range of Optical Reflectometry with Spectral Interferometry,” Jpn. J. Appl. Phys.38, 6133–6137 (1999). [CrossRef]
  2. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography.” Opt. Express11, 2183–2189 (2003). [CrossRef] [PubMed]
  3. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography.” J. Biomed. Opt.7, 457–463 (2002). [CrossRef] [PubMed]
  4. J. F. de Boer, “Spectral/Fourier Domain Optical Coherence Tomography,” in “Opt. Coherence Tomogr. - Technol. Appl.”,W. Drexler and J. Fujimoto, eds. (Springer, 2008), Biological and Medical Physics, Biomedical Engineering. [CrossRef]
  5. V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head.” Invest. Ophthalmol. Vis. Sci.49, 5103–5110 (2008). [CrossRef] [PubMed]
  6. “3D OCT-2000 Spectral Domain OCT — Topcon Medical Systems, Inc.” http://www.topconmedical.com/products/3doct2000.htm .
  7. L. D. Harris, R. A. Robb, T. S. Yuen, and E. L. Ritman, “Display and visualization of three-dimensional reconstructed anatomic morphology: experience with the thorax, heart, and coronary vasculature of dogs.” J. Comput. Assist. Tomogr.3, 439–446 (1979). [CrossRef] [PubMed]
  8. C. Dai, X. Liu, and S. Jiao, “Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source,” J. Biomed. Opt.17, 080502 (2012). [CrossRef] [PubMed]
  9. A. Gh. Podoleanu and D. A. Jackson, “Combined optical coherence tomograph and scanning laser ophthalmoscope,” Electron. Lett.34, 1088–1090 (1998). [CrossRef]
  10. A. Gh. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res.27, 464–499 (2008). [CrossRef] [PubMed]
  11. M. Pircher, E. Götzinger, and H. Sattmann, “In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level,” Opt. Express18, 13935–13944 (2010). [CrossRef] [PubMed]
  12. “OCT/SLO - Optos,” http://www.optos.com/en-GB/Products/Ultra-widefield-imaging/OCT-imaging/OCTSLO/ .
  13. S. N. Markowitz and S. V. Reyes, “Microperimetry and clinical practice: an evidence-based review,” Can. J. Ophthalmol. / J. Can. d’Ophtalmologie (2012).
  14. K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO.” Biomed. Opt. Express3, 2950–2963 (2012). [CrossRef] [PubMed]
  15. F. Larocca, D. Nankivil, S. Farsiu, and J. A. Izatt, “Handheld simultaneous scanning laser ophthalmoscopy and optical coherence tomography system.” Biomed. Opt. Express4, 2307–2321 (2013). [CrossRef] [PubMed]
  16. D. X. Hammer, N. V. Iftimia, T. E. Ustun, J. C. Magill, and R. D. Ferguson, “Dual OCT/SLO Imager with Three-Dimensional Tracker,in Ophthalmic Technol. XV,”, vol. 5688, F. Manns, P. G. Soederberg, A. Ho, B. E. Stuck, and M. Belkin, eds. (Proceedings of SPIE Vol. 5688, 2005), vol. 5688, pp. 33–44. [CrossRef]
  17. A. Bradu, L. Ma, J. W. Bloor, and A. Gh. Podoleanu, “Dual optical coherence tomography/fluorescence microscopy for monitoring of Drosophila melanogaster larval heart,” J. Biophotonics2, 380–388 (2009). [CrossRef] [PubMed]
  18. K. Komar, P. Stremplewski, M. Motoczynska, M. Szkulmowski, and M. Wojtkowski, “Multimodal instrument for high-sensitivity autofluorescence and spectral optical coherence tomography of the human eye fundus,” Biomed. Opt. Express4, 2683 (2013). [CrossRef] [PubMed]
  19. Y. K. Tao, S. Farsiu, and J. a. Izatt, “Interlaced spectrally encoded confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography.” Biomed. Opt. Express1, 431–440 (2010). [CrossRef]
  20. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16, 15149–15169 (2008). [CrossRef] [PubMed]
  21. S. Taplin, A. Gh. Podoleanu, D. Webb, and D. Jackson, “Displacement sensor using channelled spectrum dispersed on a linear CCD array,” Electron. Lett.29, 896 (1993). [CrossRef]
  22. A. Gh. Podoleanu, “Unique interpretation of Talbot Bands and Fourier domain white light interferometry,” Opt. Express15, 9867–9876 (2007). [CrossRef] [PubMed]
  23. P. Bouchal, A. Bradu, and A. Gh. Podoleanu, “Gabor fusion technique in a Talbot bands optical coherence tomography system,” Opt. Express20, 5368–5383 (2012). [CrossRef] [PubMed]
  24. A. Gh. Podoleanu and D. Woods, “Power-efficient Fourier domain optical coherence tomography setup for selection in the optical path difference sign using Talbot bands,” Opt. Lett.32, 2300–2302 (2007). [CrossRef] [PubMed]
  25. D. Woods and A. Gh. Podoleanu, “Controlling the shape of Talbot bands’ visibility,” Opt. Express16, 9654–9670 (2008). [CrossRef] [PubMed]
  26. A. Bradu and A. Gh. Podoleanu, “Attenuation of mirror image and enhancement of the signal-to-noise ratio in a Talbot bands optical coherence tomography system,” J. Biomed. Opt.16, 076010 (2011). [CrossRef] [PubMed]
  27. M. Hughes, D. Woods, and A. Gh. Podoleanu, “Control of visibility profile in spectral low-coherence interferometry,” Electron. Lett.45, 182–183 (2009). [CrossRef]
  28. Z. Hu, Y. Pan, and A. M. Rollins, “Analytical model of spectrometer-based two-beam spectral interferometry,” Appl. Opt.46, 8499–8505 (2007). [CrossRef] [PubMed]
  29. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength.” Opt. Express11, 3598–3604 (2003). [CrossRef] [PubMed]
  30. V.-F. Duma, K.-s. Lee, P. Meemon, and J. P. Rolland, “Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT.” Appl. Opt.50, 5735–5749 (2011). [CrossRef] [PubMed]
  31. M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, “Retinal cone mosaic imaged with transverse scanning optical coherence tomography.” Opt. Lett.31, 1821–1823 (2006). [CrossRef] [PubMed]
  32. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, and Others, “Performance of Fourier domain xvs. time domain optical coherence tomography,” Opt. Express11, 889–894 (2003). [CrossRef] [PubMed]
  33. A.N.S.Institute, “Safe use of lasers,” Publ. by Laser Inst. Am. pp. ANSI Z 136.1–2000 (2007).
  34. D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope.” Biomed. Opt. Express2, 2189–2201 (2011). [CrossRef] [PubMed]
  35. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second.” Opt. Express18, 14685–14704 (2010). [CrossRef] [PubMed]
  36. A. Gh. Podoleanu and D. A. Jackson, “Noise Analysis of a Combined Optical Coherence Tomograph and a Confocal Scanning Ophthalmoscope,” Appl. Opt.38, 2116 (1999). [CrossRef]
  37. R. B. Rosen, M. Hathaway, J. A. Rogers, J. Pedro, P. Garcia, P. Laissue, G. M. Dobre, and A. Gh. Podoleanu, “Multidimensional en-face OCT imaging of the retina,” Opt. Express17, 4112–4133 (2009). [CrossRef] [PubMed]
  38. L. Liu, N. Chen, and C. J. R. Sheppard, “Double-reflection polygon mirror for high-speed optical coherence microscopy,” Opt. Lett.32, 3528 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited