OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 5 — May. 1, 2014
  • pp: 1569–1587

Directional sensitivity of the retina: A layered scattering model of outer-segment photoreceptor pigments

Brian Vohnsen  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 5, pp. 1569-1587 (2014)
http://dx.doi.org/10.1364/BOE.5.001569


View Full Text Article

Enhanced HTML    Acrobat PDF (2803 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photoreceptor outer segments have been modeled as stacked arrays of discs or membrane infoldings containing visual pigments with light-induced dipole moments. Waveguiding has been excluded so fields diffract beyond the physical boundaries of each photoreceptor cell. Optical reciprocity is used to argue for identical radiative and light gathering properties of pigments to model vision. Two models have been introduced: one a macroscopic model that assumes a uniform pigment density across each layer and another microscopic model that includes the spatial location of each pigment molecule within each layer. Both models result in highly similar directionality at the pupil plane which proves to be insensitive to the exact details of the outer-segment packing being predominantly determined by the first and last contributing layers as set by the fraction of bleaching. The versatility of the microscopic model is demonstrated with an array of examples that includes the Stiles-Crawford effect, visibility of a focused beam of light and the role of defocus.

© 2014 Optical Society of America

OCIS Codes
(290.5870) Scattering : Scattering, Rayleigh
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5310) Vision, color, and visual optics : Vision - photoreceptors

ToC Category:
Vision and Visual Optics

History
Original Manuscript: January 6, 2014
Revised Manuscript: March 2, 2014
Manuscript Accepted: April 14, 2014
Published: April 18, 2014

Citation
Brian Vohnsen, "Directional sensitivity of the retina: A layered scattering model of outer-segment photoreceptor pigments," Biomed. Opt. Express 5, 1569-1587 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-5-1569


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Enoch, “Optical properties of retinal receptors,” J. Opt. Soc. Am.53(1), 71–85 (1963). [CrossRef]
  2. O. S. Packer, D. R. Williams, and D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci.16(7), 2251–2260 (1996). [PubMed]
  3. A. W. Snyder and C. Pask, “The Stiles-Crawford effect--explanation and consequences,” Vision Res.13(6), 1115–1137 (1973). [CrossRef] [PubMed]
  4. B. Vohnsen, I. Iglesias, and P. Artal, “Guided light and diffraction model of human-eye photoreceptors,” J. Opt. Soc. Am. A22(11), 2318–2328 (2005). [CrossRef] [PubMed]
  5. A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci.44(10), 4580–4592 (2003). [CrossRef] [PubMed]
  6. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011). [CrossRef] [PubMed]
  7. W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, “Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography,” Opt. Express16(9), 6486–6501 (2008). [CrossRef] [PubMed]
  8. R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, B. Cense, W. Gao, Q. Wang, and D. T. Miller, “Imaging outer segment renewal in living human cone photoreceptors,” Opt. Express18(5), 5257–5270 (2010). [CrossRef] [PubMed]
  9. M. Pircher, E. Götzinger, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level,” Biomed. Opt. Express18(13), 13935–13944 (2010).
  10. P. Bedggood and A. Mehta, “Optical imaging of human cone photoreceptors directly following the capture of light,” Plos One8(11), e79251 (2013).
  11. W. M. Harmening, P. Tiruveedhula, A. Roorda, and L. C. Sincich, “Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye,” Biomed. Opt. Express3(9), 2066–2077 (2012). [CrossRef] [PubMed]
  12. G. Toraldo di Francia, “Retina cones as dielectric antennas,” J. Opt. Soc. Am.39(4), 324 (1949). [CrossRef]
  13. B. O’Brien, “Vision and resolution in the central retina,” J. Opt. Soc. Am.41(12), 882–894 (1951). [CrossRef] [PubMed]
  14. J. M. Enoch and G. A. Fry, “Characteristics of a model retinal receptor studied at microwave frequencies,” J. Opt. Soc. Am.48(12), 899–911 (1958). [CrossRef] [PubMed]
  15. D. Rativa and B. Vohnsen, “Simulating human photoreceptor optics using a liquid-filled photonic crystal fiber,” Biomed. Opt. Express2(3), 543–551 (2011). [CrossRef] [PubMed]
  16. M. J. Piket-May, A. Taflove, and J. B. Troy, “Electrodynamics of visible-light interactions with the vertebrate retinal rod,” Opt. Lett.18(8), 568–570 (1993). [CrossRef] [PubMed]
  17. A. M. Pozo, F. Pérez-Ocón, and J. R. Jiménez, “FDTD analysis of the light propagation in the cones of the human retina: an approach to the Stiles-Crawford effect of the first kind,” J. Opt. A: Pure Appl. Opt.7(8), 357 (2005).
  18. A. Hajiaboli and M. Popovic, “Human retinal photoreceptors: electrodynamic model of optical microfilters,” IEEE Sel. Top. Quantum Electron.14(1), 126–130 (2008). [CrossRef]
  19. L. Fischer, A. Zvyagin, T. Plakhotnik, and M. Vorobyev, “Numerical modeling of light propagation in a hexagonal array of dielectric cylinders,” J. Opt. Soc. Am. A27(4), 865–872 (2010). [CrossRef] [PubMed]
  20. R. L. Sidman, “The structure and concentration of solids in photoreceptor cells studied by refractometry and interference microscopy,” J. Biophys. Biochem. Cytol.3(1), 15–30 (1957). [CrossRef] [PubMed]
  21. O. Keller, M. Xiao, and S. Bozhevolnyi, “Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach,” Surf. Sci.280(1–2), 217–230 (1993). [CrossRef]
  22. B. Vohnsen and S. I. Bozhevolnyi, “Holographic approach to phase conjugation of optical near fields,” J. Opt. Soc. Am. A14(7), 1491–1499 (1997). [CrossRef]
  23. D. C. Petersen and R. A. Cone, “The electric dipole moment of rhodopsin solubilized in Triton X-100,” Biophys. J.15(12), 1181–1200 (1975). [CrossRef] [PubMed]
  24. A. M. Laties and J. M. Enoch, “An analysis of retinal receptor orientation. I. Angular relationship of neighboring photoreceptors,” Invest. Ophthalmol.10(1), 69–77 (1971). [PubMed]
  25. J. J. Wolken, Light Detectors, Photoreceptors and Imaging Systems in Nature (Oxford University, 1995).
  26. R. H. Steinberg, S. K. Fisher, and D. H. Anderson, “Disc morphogenesis in vertebrate photoreceptors,” J. Comp. Neurol.190(3), 501–518 (1980). [CrossRef] [PubMed]
  27. A. Hendrickson and D. Drucker, “The development of parafoveal and mid-peripheral human retina,” Behav. Brain Res.49(1), 21–31 (1992). [CrossRef] [PubMed]
  28. M. P. Rowe, J. M. Corless, N. Engheta, and E. N. Pugh., “Scanning interferometry of sunfish cones. I.Longitudinal variation in single-cone refractive index,” J. Opt. Soc. Am. A13(11), 2141–2150 (1996). [CrossRef]
  29. S. A. Burns, S. Wu, J. C. He, and A. E. Elsner, “Variations in photoreceptor directionality across the central retina,” J. Opt. Soc. Am. A14(9), 2033–2040 (1997). [CrossRef]
  30. J. C. He, S. Marcos, and S. A. Burns, “Comparison of cone directionality determined by psychophysical and reflectometric techniques,” J. Opt. Soc. Am. A16(10), 2363–2369 (1999). [CrossRef] [PubMed]
  31. O. Svelto, Principles of Lasers, 3 ed. (Plenum Press, 1989).
  32. W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. Lond. B Biol. Sci.123(830), 90–118 (1937). [CrossRef]
  33. P. L. Walraven, “Recovery from the increase of the Stiles-Crawford effect after bleaching,” Nature210(5033), 311–312 (1966). [CrossRef] [PubMed]
  34. J. R. Coble and W. A. Rushton, “Stiles-Crawford effect and the bleaching of cone pigments,” J. Physiol.217(1), 231–242 (1971). [PubMed]
  35. M. Alpern, C. C. Ching, and K. Kitahara, “The directional sensitivity of retinal rods,” J. Physiol.343(1), 577–592 (1983). [PubMed]
  36. F. L. Tobey and J. M. Enoch, “Directionality and waveguide properties of optically isolated rat rods,” Invest. Ophthalmol.12(12), 873–880 (1973). [PubMed]
  37. G. Westheimer, “Dependence of the magnitude of the Stiles-Crawford effect on retinal location,” J. Physiol.192(2), 309–315 (1967). [PubMed]
  38. J. M. Enoch and G. M. Hope, “Directional sensitivity of the foveal and parafoveal retina,” Invest. Ophthalmol.12(7), 497–503 (1973). [PubMed]
  39. N. P. Zagers, T. T. Berendschot, and D. van Norren, “Wavelength dependence of reflectometric cone photoreceptor directionality,” J. Opt. Soc. Am. A20(1), 18–23 (2003). [CrossRef] [PubMed]
  40. B. Lochocki and B. Vohnsen, “Defocus-corrected analysis of the foveal Stiles–Crawford effect of the first kind across the visible spectrum,” J. Opt.15(12), 125301 (2013). [CrossRef]
  41. D. Fotiadis, Y. Liang, S. Filipek, D. A. Saperstein, A. Engel, and K. Palczewski, “Atomic-force microscopy: Rhodopsin dimers in native disc membranes,” Nature421(6919), 127–128 (2003). [CrossRef] [PubMed]
  42. W. Harmening, Department of Ophthalmology, University of Bonn, Ernst-Abbe Strasse 2, Bonn 53127, Germany (personal communication, 2013).
  43. A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vision2(5), 54 (2002).
  44. D. Rativa and B. Vohnsen, “Analysis of individual cone-photoreceptor directionality using scanning laser ophthalmoscopy,” Biomed. Opt. Express2(6), 1423–1431 (2011). [CrossRef] [PubMed]
  45. D. Rativa and B. Vohnsen, “Single- and multimode characteristics of the foveal cones: the super-Gaussian function,” J. Mod. Opt.58(19–20), 1809–1816 (2011). [CrossRef]
  46. W. L. Makous, “A transient Stiles-Crawford effect,” Vision Res.8(10), 1271–1284 (1968). [CrossRef] [PubMed]
  47. M. Kreysing, L. Boyde, J. Guck, and K. J. Chalut, “Physical insight into light scattering by photoreceptor cell nuclei,” Opt. Lett.35(15), 2639–2641 (2010). [CrossRef] [PubMed]
  48. B. Vohnsen, “Photoreceptor waveguides and effective retinal image quality,” J. Opt. Soc. Am. A24(3), 597–607 (2007). [CrossRef] [PubMed]
  49. P. Artal, C. Schwarz, C. Cánovas, and A. Mira-Agudelo, “Night myopia studied with an adaptive optics visual analyzer,” Plos One7(7), e40239 (2012).
  50. B. Vohnsen and D. Rativa, “Absence of an integrated Stiles-Crawford function for coherent light,” J. Vis.11(1), 19 (2011). [CrossRef] [PubMed]
  51. S. Castillo and B. Vohnsen, “Exploring the Stiles-Crawford effect of the first kind with coherent light and dual Maxwellian sources,” Appl. Opt.52(1), A1–A8 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited