OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 5 — May. 1, 2014
  • pp: 1626–1635

Fabricating low cost and high performance elastomer lenses using hanging droplets

W. M. Lee, A. Upadhya, P. J. Reece, and Tri Giang Phan  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 5, pp. 1626-1635 (2014)
http://dx.doi.org/10.1364/BOE.5.001626


View Full Text Article

Enhanced HTML    Acrobat PDF (3068 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Existing methods for low cost lenses using parallel mold stamping and high temperature reflow requires complex engineering controls to produce high quality lenses. These manufacturing techniques rely on expensive equipment. In this paper, we propose a low cost (< $ 0.01 per pc) flexible moldless lens fabrication method based on curing a hanging transparent polydimethylsiloxane (PDMS) elastomer droplet on a curved substrate. Additional deposition of hanging droplets in the same manner led to a substantial increase in the lens curvature and concomitant decrease in the focal length of the PDMS lenses down to ~2 mm. The shortest focal length lenses were shown to collimate light from a bare light emitting diode (LED) and image microscopic structures down to around 4 µm with 160x magnification. Our hanging droplet lens fabrication technique heralds a new paradigm in the manufacture of low cost, high performance optical lenses for the masses. Using these lenses, we were able to transform an ordinary commercial smartphone camera into a low-cost digital dermascope (60x magnification) that can readily visualize microscopic structures on skin such as sweat pores.

© 2014 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(180.0180) Microscopy : Microscopy
(220.4610) Optical design and fabrication : Optical fabrication

ToC Category:
Novel Light Sources, Optics, and Detectors

History
Original Manuscript: February 21, 2014
Revised Manuscript: April 2, 2014
Manuscript Accepted: April 5, 2014
Published: April 24, 2014

Citation
W. M. Lee, A. Upadhya, P. J. Reece, and Tri Giang Phan, "Fabricating low cost and high performance elastomer lenses using hanging droplets," Biomed. Opt. Express 5, 1626-1635 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-5-1626


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Tolley, “Polymer optics gain respect,” Photon. Spectra37, 76–79 (2003).
  2. S. W. Menzies, J. Emery, M. Staples, S. Davies, B. McAvoy, J. Fletcher, K. R. Shahid, G. Reid, M. Avramidis, A. M. Ward, R. C. Burton, and J. M. Elwood, “Impact of dermoscopy and short-term sequential digital dermoscopy imaging for the management of pigmented lesions in primary care: a sequential intervention trial,” Br. J. Dermatol.161(6), 1270–1277 (2009). [CrossRef] [PubMed]
  3. L. Bellina and E. Missoni, “Mobile cell-phones (M-phones) in telemicroscopy: increasing connectivity of isolated laboratories,” Diagn. Pathol.4(1), 19 (2009). [CrossRef] [PubMed]
  4. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. K. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010). [CrossRef] [PubMed]
  5. E. Linder, A. Grote, S. Varjo, N. Linder, M. Lebbad, M. Lundin, V. Diwan, J. Hannuksela, and J. Lundin, “On-Chip Imaging of Schistosoma haematobium Eggs in Urine for Diagnosis by Computer Vision,” PLoS Negl. Trop. Dis.7(12), e2547 (2013). [CrossRef] [PubMed]
  6. D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile Phone Based Clinical Microscopy for Global Health Applications,” PLoS ONE4(7), e6320 (2009). [CrossRef] [PubMed]
  7. H. Zhu, S. O. Isikman, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Optical imaging techniques for point-of-care diagnostics,” Lab Chip13(1), 51–67 (2012). [CrossRef] [PubMed]
  8. X.-H. Lee, I. Moreno, and C.-C. Sun, “High-performance LED street lighting using microlens arrays,” Opt. Express21(9), 10612–10621 (2013). [CrossRef] [PubMed]
  9. P. J. Gramann and T. A. Osswald, Injection Molding Handbook (Hanser Gardner Publication Inc, Cincinnati, 2002).
  10. J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater.8(7), 1380–1385 (1996). [CrossRef]
  11. Y. Gambin, O. Legrand, and S. R. Quake, “Microfabricated rubber microscope using soft solid immersion lenses,” Appl. Phys. Lett.88(17), 174102 (2006). [CrossRef]
  12. K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science312(5773), 557–561 (2006). [CrossRef] [PubMed]
  13. J. J. Kim, Y. Lee, H. G. Kim, K. J. Choi, H. S. Kweon, S. Park, and K. H. Jeong, “Biologically inspired LED lens from cuticular nanostructures of firefly lantern,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18674–18678 (2012). [CrossRef] [PubMed]
  14. Dow Corning Newest Moldable Optical Silicone Further Expands Options for More Energy Efficient and Reliable LED Lighting Designs,” (2013), http://www.dowcorning.com/content/news/Moldable_Optical_Silicone.aspx .
  15. H. Ren, S. Xu, and S.-T. Wu, “Effects of gravity on the shape of liquid droplets,” Opt. Commun.283(17), 3255–3258 (2010). [CrossRef]
  16. R. Tadmor, P. Bahadur, A. Leh, H. E. N’guessan, R. Jaini, and L. Dang, “Measurement of Lateral Adhesion Forces at the Interface between a Liquid Drop and a Substrate,” Phys. Rev. Lett.103(26), 266101 (2009). [CrossRef] [PubMed]
  17. F. A. Chowdhury and K. J. Chau, “Variable focus microscopy using a suspended water droplet,” J. Opt.14(5), 055501 (2012). [CrossRef]
  18. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett.82(3), 316–318 (2003). [CrossRef]
  19. Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust Fourier ptychographic imaging,” Opt. Express21(26), 32400–32410 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited