OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 6 — Jun. 1, 2014
  • pp: 1757–1767

Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging

Siyuan Dong, Radhika Shiradkar, Pariksheet Nanda, and Guoan Zheng  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 6, pp. 1757-1767 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4032 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Information multiplexing is important for biomedical imaging and chemical sensing. In this paper, we report a microscopy imaging technique, termed state-multiplexed Fourier ptychography (FP), for information multiplexing and coherent-state decomposition. Similar to a typical Fourier ptychographic setting, we use an array of light sources to illuminate the sample from different incident angles and acquire corresponding low-resolution images using a monochromatic camera. In the reported technique, however, multiple light sources are lit up simultaneously for information multiplexing, and the acquired images thus represent incoherent summations of the sample transmission profiles corresponding to different coherent states. We show that, by using the state-multiplexed FP recovery routine, we can decompose the incoherent mixture of the FP acquisitions to recover a high-resolution sample image. We also show that, color-multiplexed imaging can be performed by simultaneously turning on R/G/B LEDs for data acquisition. The reported technique may provide a solution for handling the partially coherent effect of light sources used in Fourier ptychographic imaging platforms. It can also be used to replace spectral filter, gratings or other optical components for spectral multiplexing and demultiplexing. With the availability of cost-effective broadband LEDs, the reported technique may open up exciting opportunities for computational multispectral imaging.

© 2014 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.0180) Medical optics and biotechnology : Microscopy
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:

Original Manuscript: March 19, 2014
Revised Manuscript: May 4, 2014
Manuscript Accepted: May 5, 2014
Published: May 9, 2014

Siyuan Dong, Radhika Shiradkar, Pariksheet Nanda, and Guoan Zheng, "Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging," Biomed. Opt. Express 5, 1757-1767 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics7(9), 739–745 (2013). [CrossRef]
  2. M. Ryle and A. Hewish, “The synthesis of large radio telescopes,” Mon. Not. R. Astron. Soc.120, 220 (1960).
  3. A. B. Meinel, “Aperture synthesis using independent telescopes,” Appl. Opt.9(11), 2501 (1970). [CrossRef] [PubMed]
  4. R. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.)35, 237 (1972).
  5. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett.3(1), 27–29 (1978). [CrossRef] [PubMed]
  6. L. Taylor, “The phase retrieval problem,” IEEE Trans. Antennas Propag.29(2), 386–391 (1981). [CrossRef]
  7. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.21(15), 2758–2769 (1982). [CrossRef] [PubMed]
  8. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng.21, 215829 (1982).
  9. R. A. Gonsalves, “Phase retrieval by differential intensity measurements,” J. Opt. Soc. Am. A.4(1), 166–170 (1987). [CrossRef]
  10. L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun.199(1-4), 65–75 (2001). [CrossRef]
  11. B. H. Dean and C. W. Bowers, “Diversity selection for phase-diverse phase retrieval,” J. Opt. Soc. Am. A20(8), 1490–1504 (2003). [CrossRef] [PubMed]
  12. V. Elser, “Phase retrieval by iterated projections,” J. Opt. Soc. Am. A20(1), 40–55 (2003). [CrossRef] [PubMed]
  13. L. Waller, S. S. Kou, C. J. R. Sheppard, and G. Barbastathis, “Phase from chromatic aberrations,” Opt. Express18(22), 22817–22825 (2010). [CrossRef] [PubMed]
  14. C.-H. Lu, C. Barsi, M. O. Williams, J. N. Kutz, and J. W. Fleischer, “Phase retrieval using nonlinear diversity,” Appl. Opt.52(10), D92–D96 (2013). [CrossRef] [PubMed]
  15. H. M. L. Faulkner and J. M. Rodenburg, “Movable Aperture Lensless Transmission Microscopy: A Novel Phase Retrieval Algorithm,” Phys. Rev. Lett.93(2), 023903 (2004). [CrossRef] [PubMed]
  16. M. Guizar-Sicairos and J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express16(10), 7264–7278 (2008). [CrossRef] [PubMed]
  17. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-Resolution Scanning X-Ray Diffraction Microscopy,” Science321(5887), 379–382 (2008). [CrossRef] [PubMed]
  18. P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy109(4), 338–343 (2009). [CrossRef] [PubMed]
  19. M. Dierolf, P. Thibault, A. Menzel, C. M. Kewish, K. Jefimovs, I. Schlichting, K. von König, O. Bunk, and F. Pfeiffer, “Ptychographic coherent diffractive imaging of weakly scattering specimens,” New J. Phys.12(3), 035017 (2010). [CrossRef]
  20. A. M. Maiden, J. M. Rodenburg, and M. J. Humphry, “Optical ptychography: a practical implementation with useful resolution,” Opt. Lett.35(15), 2585–2587 (2010). [CrossRef] [PubMed]
  21. F. Hüe, J. M. Rodenburg, A. M. Maiden, and P. A. Midgley, “Extended ptychography in the transmission electron microscope: Possibilities and limitations,” Ultramicroscopy111(8), 1117–1123 (2011). [CrossRef] [PubMed]
  22. A. Shenfield and J. M. Rodenburg, “Evolutionary determination of experimental parameters for ptychographical imaging,” J. Appl. Phys.109(12), 124510 (2011). [CrossRef]
  23. M. J. Humphry, B. Kraus, A. C. Hurst, A. M. Maiden, and J. M. Rodenburg, “Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging,” Nat. Commun.3, 730 (2012). [CrossRef] [PubMed]
  24. T. B. Edo, D. J. Batey, A. M. Maiden, C. Rau, U. Wagner, Z. D. Pešić, T. A. Waigh, and J. M. Rodenburg, “Sampling in x-ray ptychography,” Phys. Rev. A87(5), 053850 (2013). [CrossRef]
  25. S. Marchesini, A. Schirotzek, C. Yang, H.- Wu, and F. Maia, “Augmented projections for ptychographic imaging,” Inverse Probl.29(11), 115009 (2013). [CrossRef]
  26. W. Hoppe and G. Strube, “Diffraction in inhomogeneous primary wave fields. 2. Optical experiments for phase determination of lattice interferences,” Acta Crystallogr. A25, 502–507 (1969). [CrossRef]
  27. J. M. Rodenburg and R. H. T. Bates, “The Theory of Super-Resolution Electron Microscopy Via Wigner-Distribution Deconvolution,” Philosoph. Trans. R. Soc. London. Ser. A: Phys. Eng. Sci.339(1655), 521–553 (1992). [CrossRef]
  28. X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett.38(22), 4845–4848 (2013). [CrossRef] [PubMed]
  29. E. Wolf, “New theory of partial coherence in the space-frequency domain. Part I: spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am.72(3), 343–351 (1982). [CrossRef]
  30. L. W. Whitehead, G. J. Williams, H. M. Quiney, D. J. Vine, R. A. Dilanian, S. Flewett, K. A. Nugent, A. G. Peele, E. Balaur, and I. McNulty, “Diffractive Imaging Using Partially Coherent X Rays,” Phys. Rev. Lett.103(24), 243902 (2009). [CrossRef] [PubMed]
  31. B. Abbey, L. W. Whitehead, H. M. Quiney, D. J. Vine, G. A. Cadenazzi, C. A. Henderson, K. A. Nugent, E. Balaur, C. T. Putkunz, A. G. Peele, G. J. Williams, and I. McNulty, “Lensless imaging using broadband X-ray sources,” Nat. Photonics5(7), 420–424 (2011). [CrossRef]
  32. P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature494(7435), 68–71 (2013). [CrossRef] [PubMed]
  33. D. J. Batey, D. Claus, and J. M. Rodenburg, “Information multiplexing in ptychography,” Ultramicroscopy138, 13–21 (2014). [CrossRef] [PubMed]
  34. G. Zheng, “Breakthroughs in Photonics 2013: Fourier Ptychographic Imaging,” IEEE Photon. J.6(2), 1–7 (2014). [CrossRef]
  35. S. Dong, Z. Bian, R. Shiradkar, and G. Zheng, “Sparsely sampled Fourier ptychography,” Opt. Express22(5), 5455–5464 (2014). [CrossRef] [PubMed]
  36. Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust Fourier ptychographic imaging,” Opt. Express21(26), 32400–32410 (2013). [CrossRef] [PubMed]
  37. M. N. Gurcan, L. E. Boucheron, A. Can, A. Madabhushi, N. M. Rajpoot, and B. Yener, “Histopathological image analysis: A review,” IEEE Rev. Biomed. Eng.2, 147–171 (2009). [CrossRef] [PubMed]
  38. H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt.17(7), 0760051 (2012). [CrossRef] [PubMed]
  39. F. Woolfe, M. Maggioni, G. Davis, F. Warner, R. Coifman, and S. Zucker, “Hyper-spectral microscopic discrimination between normal and cancerous colon biopsies,” IEEE Trans. Med. Imaging99, 9999 (1999).
  40. D. T. Dicker, J. Lerner, P. Van Belle, S. F. Barth, D. Guerry, M. Herlyn, D. E. Elder, and W. S. El-Deiry, “Differentiation of Normal Skin and Melanoma using High Resolution Hyperspectral Imaging,” Cancer Biol. Ther.5(8), 1033–1038 (2006). [CrossRef] [PubMed]
  41. K. Hoshino, P. P. Joshi, G. Bhave, K. V. Sokolov, and X. Zhang, “Use of colloidal quantum dots as a digitally switched swept light source for gold nanoparticle based hyperspectral microscopy,” Biomed. Opt. Express5(5), 1610–1615 (2014). [CrossRef]
  42. R. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag.24(4), 118–121 (2007). [CrossRef]
  43. D. Brady and M. Gehm, “Compressive imaging spectrometers using coded apertures,” in Defense and Security Symposium, (International Society for Optics and Photonics, 2006), 62460A–62460A.
  44. M. Parmar, S. Lansel, and B. A. Wandell, “Spatio-spectral reconstruction of the multispectral datacube using sparse recovery,” in Image Processing,2008. ICIP 2008. 15th IEEE International Conference on, (IEEE, 2008), 473–476. [CrossRef]
  45. R. Willett, M. E. Gehm, and D. J. Brady, “Multiscale reconstruction for computational spectral imaging,” in Electronic Imaging 2007, (International Society for Optics and Photonics, 2007), 64980L–64980L–64915. 1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited