OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 2435–2445

Classification for breast cancer diagnosis with Raman spectroscopy

Qingbo Li, Qishuo Gao, and Guangjun Zhang  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 7, pp. 2435-2445 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1029 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In order to promote the development of the portal, low-cost and in vivo cancer diagnosis instrument, a miniature laser Raman spectrometer was employed to acquire the conventional Raman spectra for breast cancer detection in this paper. But it is difficult to achieve high discrimination accuracy. Then a novel method of adaptive weight k-local hyperplane (AWKH) is proposed to increase the classification accuracy. AWKH is an extension and improvement of K-local hyperplane distance nearest-neighbor (HKNN). It considers the features weights of the training data in the nearest neighbor selection and local hyperplane construction stage, which resolve the basic shortcoming of HKNN works well only for small values of the nearest-neighbor. Experimental results on Raman spectra of breast tissues in vitro show the proposed method can realize high classification accuracy.

© 2014 Optical Society of America

OCIS Codes
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Spectroscopic Diagnostics

Original Manuscript: April 9, 2014
Revised Manuscript: May 21, 2014
Manuscript Accepted: May 23, 2014
Published: June 27, 2014

Qingbo Li, Qishuo Gao, and Guangjun Zhang, "Classification for breast cancer diagnosis with Raman spectroscopy," Biomed. Opt. Express 5, 2435-2445 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Carter, “New Global Survey Shows an Increasing Cancer Burden,” Am. J. Nurs.114(3), 17–18 (2014). [CrossRef] [PubMed]
  2. R. Siegel, J. Ma, Z. Zou, and J. Ahmedin, “Cancer statistics, 2014,” CA. 64(1), 9–29 (2014).
  3. Q. B. Li, X. J. Sun, Y. Z. Xu, L. M. Yang, Y. F. Zhang, S. F. Weng, J. S. Shi, and J. G. Wu, “Diagnosis of gastric inflammation and malignancy in endoscopic biopsies based on Fourier transform infrared spectroscopy,” Clin. Chem.51(2), 346–350 (2005). [CrossRef] [PubMed]
  4. R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron.23(10), 1806–1811 (1987). [CrossRef]
  5. R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, and E. Clemer, “Human breast tissues studied by IR Fourier transform Raman spectroscopy,” Lasers Life Sci.4(1), 23–28 (1991).
  6. Y. Pu, W. B. Wang, Y. L. Yang, and R. R. Alfano, “Native fluorescence spectra of human cancerous and normal breast tissues analyzed with non-negative constraint methods,” Appl. Opt.52(6), 1293–1301 (2013). [CrossRef] [PubMed]
  7. S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Near-infrared Raman spectroscopy for early diagnosis and typing of adenocarcinoma in the stomach,” Br. J. Surg.97(4), 550–557 (2010). [CrossRef] [PubMed]
  8. C. H. Liu, Y. Zhou, Y. Sun, J. Y. Li, L. X. Zhou, S. Boydston-White, V. Masilamani, K. Zhu, Y. Pu, and R. R. Alfano, “Resonance Raman and Raman Spectroscopy for Breast Cancer Detection,” Technol. Cancer Res. Treat.12(4), 371–382 (2013). [PubMed]
  9. A. F. García-Flores, L. Raniero, R. A. Canevari, K. J. Jalkanen, R. A. Bitar, H. S. Martinho, and A. A. Martin, “High-wavenumber FT-Raman spectroscopy for in vivo and ex vivo measurements of breast cancer,” Theor. Chem. Acc.130(4–6), 1231–1238 (2011). [CrossRef]
  10. C. Yu, E. Gestl, K. Eckert, D. Allara, and J. Irudayaraj, “Characterization of human breast epithelial cells by confocal Raman microspectroscopy,” Cancer Detect. Prev.30(6), 515–522 (2006). [CrossRef] [PubMed]
  11. A. Zoladek, F. C. Pascut, P. Patel, and I. Notingher, “Non-invasive time-course imaging of apoptotic cells by confocal Raman micro-spectroscopy,” J. Raman Spectrosc.42(3), 251–258 (2011). [CrossRef]
  12. A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, J. Lyons, D. Hicks, M. Fitzmaurice, R. R. Dasari, J. P. Crowe, and M. S. Feld, “In vivo Margin Assessment during Partial Mastectomy Breast Surgery Using Raman Spectroscopy,” Cancer Res.66(6), 3317–3322 (2006). [CrossRef] [PubMed]
  13. A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, R. Shenk, N. Wang, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Diagnosing breast cancer using Raman spectroscopy: prospective analysis,” J. Biomed. Opt.14(5), 054023 (2009). [CrossRef] [PubMed]
  14. M. V. P. Chowdary, K. Kalyan Kumar, S. Mathew, L. Rao, C. M. Krishna, and J. Kurien, “Biochemical correlation of Raman spectra of normal, benign and malignant breast tissues: a spectral deconvolution study,” Biopolymers91(7), 539–546 (2009). [CrossRef] [PubMed]
  15. C. H. Liu, W. B. Wang, A. Alimova, V. Sriramoju, V. Kartazayev, and R. R. Alfano, “Monitoring changes of proteins and lipids in laser welded aorta tissue using Raman spectroscopy and basis biochemical component analyses,” Proc. SPIE7175, 717504 (2009).
  16. O. G. Okun, “K-local hyperplane distance nearest-neighbor algorithm and protein fold recognition,” Pattern Recognit. Image Anal.16(1), 19–22 (2006). [CrossRef]
  17. P. Vincent, Y. Bengio, “K-local hyperplane and convex distance nearest neighbor algorithms,” NIPS, 985–992 (2001).
  18. M. S. Feld, R. Manoharan, J. Salenius, J. Orenstein-Carndona, T. J. Roemer, J. F. Brennan, and Y. Wang, “Detection and characterization of human tissue lesions with near-infrared Raman spectroscopy,” Proc. SPIE2388, 99–104 (1995). [CrossRef]
  19. G. Li, “Removing Background of Raman Spectrum Based on Wavelet Transform,” International Conference on Future Computer and Communication (IEEE, 2009), pp. 198–200. [CrossRef]
  20. K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Raman microspectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo,” J. Raman Spectroscopy33(7), 552–563 (2002). [CrossRef]
  21. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosising breast cancer by using Raman spectroscopy,” Proc. Nat. Acad. Sci. USA102(35), 12371–12376 (2005). [CrossRef]
  22. M. V. P. Chowdary, K. K. Kumar, J. Kurien, S. Mathew, and C. M. Krishna, “Discrimination of normal, benign, and malignant breast tissues by Raman spectroscopy,” Biopolymers83(5), 556–569 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited