OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 8 — Aug. 1, 2014
  • pp: 2563–2579

Improving high resolution retinal image quality using speckle illumination HiLo imaging

Xiaolin Zhou, Phillip Bedggood, and Andrew Metha  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 8, pp. 2563-2579 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4470 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood illumination microscopes and produce pseudo-confocal images with significantly improved image quality. In this work, we adopted the HiLo technique to a flood AO ophthalmoscope and performed AO imaging in both (physical) model and live rat eyes. The improvement in image quality from HiLo imaging is shown both qualitatively and quantitatively by using spatial spectral analysis.

© 2014 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(330.4875) Vision, color, and visual optics : Optics of physiological systems

ToC Category:
Ophthalmology Applications

Original Manuscript: May 5, 2014
Revised Manuscript: June 30, 2014
Manuscript Accepted: June 30, 2014
Published: July 10, 2014

Xiaolin Zhou, Phillip Bedggood, and Andrew Metha, "Improving high resolution retinal image quality using speckle illumination HiLo imaging," Biomed. Opt. Express 5, 2563-2579 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. V. Bui, B. Edmunds, G. A. Cioffi, and B. Fortune, “The gradient of retinal functional changes during acute intraocular pressure elevation,” Invest. Ophthalmol. Vis. Sci.46(1), 202–213 (2005). [CrossRef] [PubMed]
  2. B. V. Bui, M. Loeliger, M. Thomas, A. J. Vingrys, S. M. Rees, C. T. Nguyen, Z. He, and M. Tolcos, “Investigating structural and biochemical correlates of ganglion cell dysfunction in streptozotocin-induced diabetic rats,” Exp. Eye Res.88(6), 1076–1083 (2009). [CrossRef] [PubMed]
  3. K. Kohzaki, A. J. Vingrys, and B. V. Bui, “Early inner retinal dysfunction in streptozotocin-induced diabetic rats,” Invest. Ophthalmol. Vis. Sci.49(8), 3595–3604 (2008). [CrossRef] [PubMed]
  4. Z. He, B. V. Bui, and A. J. Vingrys, “Effect of repeated iop challenge on rat retinal function,” Invest. Ophthalmol. Vis. Sci.49(7), 3026–3034 (2008). [CrossRef] [PubMed]
  5. R. E. Marc, B. W. Jones, C. B. Watt, F. Vazquez-Chona, D. K. Vaughan, and D. T. Organisciak, “Extreme retinal remodeling triggered by light damage: Implications for age related macular degeneration,” Mol. Vis.14, 782–806 (2008). [PubMed]
  6. S. L. Mansour, K. R. Thomas, and M. R. Capecchi, “Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: A general strategy for targeting mutations to non-selectable genes,” Nature336(6197), 348–352 (1988). [CrossRef] [PubMed]
  7. M. R. Capecchi, “Altering the genome by homologous recombination,” Science244(4910), 1288–1292 (1989). [CrossRef] [PubMed]
  8. A. Abbott, “Laboratory animals: The renaissance rat,” Nature428(6982), 464–466 (2004). [CrossRef] [PubMed]
  9. A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009). [CrossRef] [PubMed]
  10. X. Zhou, P. Bedggood, and A. Metha, “Limitations to adaptive optics image quality in rodent eyes,” Biomed. Opt. Express3(8), 1811–1824 (2012). [CrossRef] [PubMed]
  11. Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, and D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express3(4), 715–734 (2012). [CrossRef] [PubMed]
  12. Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci.50(12), 5872–5879 (2009). [CrossRef] [PubMed]
  13. J. B. Schallek, Y. Geng, H. Nguyen, and D. R. Williams, “Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization,” Invest. Ophthalmol. Vis. Sci.54(13), 8237–8250 (2013). [CrossRef] [PubMed]
  14. A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express10(9), 405–412 (2002). [CrossRef] [PubMed]
  15. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: Optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A24(5), 1373–1383 (2007). [CrossRef] [PubMed]
  16. M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, “Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography,” Opt. Lett.33(1), 22–24 (2008). [CrossRef] [PubMed]
  17. Y. F. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt.18(5), 056007 (2013). [CrossRef] [PubMed]
  18. A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci.87(4), 260–268 (2010). [PubMed]
  19. J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express2(4), 781–793 (2011). [CrossRef] [PubMed]
  20. P. Bedggood and A. Metha, “Analysis of contrast and motion signals generated by human blood constituents in capillary flow,” Opt. Lett.39(3), 610–613 (2014). [CrossRef] [PubMed]
  21. P. Bedggood and A. Metha, “Optical imaging of human cone photoreceptors directly following the capture of light,” PLoS ONE8(11), e79251 (2013). [CrossRef] [PubMed]
  22. P. Bedggood and A. Metha, “Direct visualization and characterization of erythrocyte flow in human retinal capillaries,” Biomed. Opt. Express3(12), 3264–3277 (2012). [CrossRef] [PubMed]
  23. D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett.33(16), 1819–1821 (2008). [CrossRef] [PubMed]
  24. D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination hilo microscopy,” J. Biomed. Opt.16(1), 016014 (2011). [CrossRef] [PubMed]
  25. S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt.14(3), 030502 (2009). [CrossRef] [PubMed]
  26. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “Nih image to imagej: 25 years of image analysis,” Nat. Methods9(7), 671–675 (2012). [CrossRef] [PubMed]
  27. D. Lim and J. Mertz, “Hilo imagej plugin (version 1.2),” (2013), http://biomicroscopy.bu.edu/resources/ .
  28. T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence hilo endomicroscopy,” J. Biomed. Opt.17(2), 021105 (2012). [CrossRef] [PubMed]
  29. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A14(11), 2873–2883 (1997). [CrossRef] [PubMed]
  30. A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(6), 1757–1768 (2011). [CrossRef] [PubMed]
  31. J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci.51(3), 1691–1698 (2010). [CrossRef] [PubMed]
  32. Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, and D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express2(4), 717–738 (2011). [CrossRef] [PubMed]
  33. A. Hughes, “A schematic eye for the rat,” Vision Res.19(5), 569–588 (1979). [CrossRef] [PubMed]
  34. F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ansi 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A24(5), 1250–1265 (2007). [CrossRef] [PubMed]
  35. Y. N. Sulai and A. Dubra, “Optical design of a broadband scanning adaptive optics ophthalmoscope for the mouse eye,” in SPIE Proceedings(MEMS Adaptive Optics VIII, 2014), pp. 89780E–89780E–89789.
  36. J. Michaelson, H. J. Choi, P. So, and H. D. Huang, “Depth-resolved cellular microrheology using hilo microscopy,” Biomed. Opt. Express3(6), 1241–1255 (2012). [CrossRef] [PubMed]
  37. A. Pinhas, M. Dubow, N. Shah, T. Y. Chui, D. Scoles, Y. N. Sulai, R. Weitz, J. B. Walsh, J. Carroll, A. Dubra, and R. B. Rosen, “In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography,” Biomed. Opt. Express4(8), 1305–1317 (2013). [CrossRef] [PubMed]
  38. H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express19(15), 14160–14171 (2011). [CrossRef] [PubMed]
  39. Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express5(2), 547–559 (2014). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited