OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 8 — Aug. 1, 2014
  • pp: 2726–2735

Measurements of extrinsic fluorescence in Intralipid and polystyrene microspheres

Vinh Nguyen Du Le, Zhaojun Nie, Joseph E. Hayward, Thomas J. Farrell, and Qiyin Fang  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 8, pp. 2726-2735 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1741 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The fluorescence of Intralipid and polystyrene microspheres with sphere diameter of 1 µm at a representative lipid and microsphere concentration for simulation of mucosal tissue scattering has not been a subject of extensive experimental study. In order to elucidate the quantitative relationship between lipid and microsphere concentration and the respective fluorescent intensity, the extrinsic fluorescence spectra between 360 nm and 650 nm (step size of 5 nm) were measured at different lipid concentrations (from 0.25% to 5%) and different microsphere concentrations (0.00364, 0.0073, 0.0131 spheres per cubic micrometer) using laser excitation at 355 nm with pulse energy of 2.8 µJ. Current findings indicated that Intralipid has a broadband emission between 360 and 650 nm with a primary peak at 500 nm and a secondary peak at 450 nm while polystyrene microspheres have a single peak at 500 nm. In addition, for similar scattering properties the fluorescence of Intralipid solutions is approximately three-fold stronger than that of the microsphere solutions. Furthermore, Intralipid phantoms with lipid concentrations ~2% (simulating the bottom layer of mucosa) produce up to seven times stronger fluorescent emission than phantoms with lipid concentration ~0.25% (simulating the top layer of mucosa). The fluoresence decays of Intralipid and microsphere solutions were also recorded for estimation of fluorescence lifetime.

© 2014 Optical Society of America

OCIS Codes
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:
Calibration, Validation and Phantom Studies

Original Manuscript: March 5, 2014
Revised Manuscript: May 27, 2014
Manuscript Accepted: July 16, 2014
Published: July 22, 2014

Vinh Nguyen Du Le, Zhaojun Nie, Joseph E. Hayward, Thomas J. Farrell, and Qiyin Fang, "Measurements of extrinsic fluorescence in Intralipid and polystyrene microspheres," Biomed. Opt. Express 5, 2726-2735 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Siegel, E. Ward, O. Brawley, and A. Jemal, “Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths,” CA Cancer J. Clin.61(4), 212–236 (2011). [CrossRef] [PubMed]
  2. M. Müller and B. H. Hendriks, “Recovering intrinsic fluorescence by Monte Carlo modeling,” J. Biomed. Opt.18(2), 027009 (2013). [CrossRef] [PubMed]
  3. K. Vishwanath and M. A. Mycek, “Time-resolved photon migration in bi-layered tissue models,” Opt. Express13(19), 7466–7482 (2005). [CrossRef] [PubMed]
  4. Q. Wang, K. Shastri, and T. J. Pfefer, “Experimental and theoretical evaluation of a fiber-optic approach for optical property measurement in layered epithelial tissue,” Appl. Opt.49(28), 5309–5320 (2010). [CrossRef] [PubMed]
  5. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001). [CrossRef] [PubMed]
  6. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004). [CrossRef] [PubMed]
  7. Y. Chen, A. D. Aguirre, P.-L. Hsiung, S. Desai, P. R. Herz, M. Pedrosa, Q. Huang, M. Figueiredo, S. W. Huang, A. Koski, J. M. Schmitt, J. G. Fujimoto, and H. Mashimo, “Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology,” Endoscopy39(7), 599–605 (2007). [CrossRef] [PubMed]
  8. V. N. Le, Q. Wang, J. C. Ramella-Roman, and T. J. Pfefer, “Monte Carlo modeling of light-tissue interactions in narrow band imaging,” J. Biomed. Opt.18(1), 010504 (2013). [CrossRef] [PubMed]
  9. K. Hazen, J. Welch, S. Malin, T. Ruchti, A. Lorenz, T. Troy, S. Thennadil, and T. Blank, “A Human Tissue Surrogate,” WIPO Patent 2001058344 (2001).
  10. A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt.39(7), 1194–1201 (2000). [CrossRef] [PubMed]
  11. J. Swartling, J. Svensson, D. Bengtsson, K. Terike, and S. Andersson-Engels, “Fluorescence spectra provide information on the depth of fluorescent lesions in tissue,” Appl. Opt.44(10), 1934–1941 (2005). [CrossRef] [PubMed]
  12. S. H. Chung, A. E. Cerussi, S. I. Merritt, J. Ruth, and B. J. Tromberg, “Non-invasive tissue temperature measurements based on quantitative diffuse optical spectroscopy (DOS) of water,” Phys. Med. Biol.55(13), 3753–3765 (2010). [CrossRef] [PubMed]
  13. G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol.42(7), 1415–1426 (1997). [CrossRef] [PubMed]
  14. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006). [CrossRef] [PubMed]
  15. B. S. Suresh Anand and N. Sujatha, “Effects of Intralipid-10% in fluorescence distortion studies on liquid-tissue phantoms in UV range,” J. Biophotonics4(1-2), 92–97 (2011). [CrossRef] [PubMed]
  16. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13(5), 050501 (2008). [CrossRef] [PubMed]
  17. N. Rajaram, T. J. Aramil, K. Lee, J. S. Reichenberg, T. H. Nguyen, and J. W. Tunnell, “Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy,” Appl. Opt.49(2), 142–152 (2010). [CrossRef] [PubMed]
  18. Q. Liu, C. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt.8(2), 223–236 (2003). [CrossRef] [PubMed]
  19. Q. Wang, D. Le, J. Ramella-Roman, and J. Pfefer, “Broadband ultraviolet-visible optical property measurement in layered turbid media,” Biomed. Opt. Express3(6), 1226–1240 (2012). [CrossRef] [PubMed]
  20. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol.58(11), R37–R61 (2013). [CrossRef] [PubMed]
  21. M. Godin, A. K. Bryan, T. P. Burg, K. Babcock, and S. R. Manalis, “Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator,” Appl. Phys. Lett.91(12), 123121 (2007). [CrossRef]
  22. S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature442(7100), 282–286 (2006). [CrossRef] [PubMed]
  23. L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007), Chap. 2.
  24. P. D. T. Huibers, “Models for the wavelength dependence of the index of refraction of water,” Appl. Opt.36(16), 3785–3787 (1997). [CrossRef] [PubMed]
  25. X. Quan and E. S. Fry, “Empirical equation for the index of refraction of seawater,” Appl. Opt.34(18), 3477–3480 (1995). [CrossRef] [PubMed]
  26. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol.48(24), 4165–4172 (2003). [CrossRef] [PubMed]
  27. S. A. Prahl, “Mie Scattering Calculator”. http://omlc.ogi.edu/calc/mie_calc.html
  28. Z. Nie, R. An, J. E. Hayward, T. J. Farrell, and Q. Fang, “Hyperspectral fluorescence lifetime imaging for optical biopsy,” J. Biomed. Opt.18(9), 096001 (2013). [CrossRef] [PubMed]
  29. Y. Yuan, J.-Y. Hwang, M. Krishnamoorthy, J. Ning, Y. Zhang, K. Ye, R. C. Wang, M. J. Deen, and Q. Fang, “High throughput AOTF-based time-resolved fluorescence spectrometer for optical biopsy,” Opt. Lett.34(7), 1132–1134 (2009). [CrossRef] [PubMed]
  30. H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  31. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992). [CrossRef] [PubMed]
  32. B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, “Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range,” Opt. Express21(26), 32450–32467 (2013). [CrossRef] [PubMed]
  33. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006), Chap. 4.
  34. M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev.110(5), 2641–2684 (2010). [CrossRef] [PubMed]
  35. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt.35(13), 2304–2314 (1996). [CrossRef] [PubMed]
  36. M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos, “Effects of background fluorescence in fluorescence molecular tomography,” Appl. Opt.44(26), 5468–5474 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited