OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 9 — Sep. 1, 2014
  • pp: 3174–3191

Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy

Qiang Yang, Jie Zhang, Koji Nozato, Kenichi Saito, David R. Williams, Austin Roorda, and Ethan A. Rossi  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 9, pp. 3174-3191 (2014)
http://dx.doi.org/10.1364/BOE.5.003174


View Full Text Article

Enhanced HTML    Acrobat PDF (1751 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Eye motion is a major impediment to the efficient acquisition of high resolution retinal images with the adaptive optics (AO) scanning light ophthalmoscope (AOSLO). Here we demonstrate a solution to this problem by implementing both optical stabilization and digital image registration in an AOSLO. We replaced the slow scanning mirror with a two-axis tip/tilt mirror for the dual functions of slow scanning and optical stabilization. Closed-loop optical stabilization reduced the amplitude of eye-movement related-image motion by a factor of 10–15. The residual RMS error after optical stabilization alone was on the order of the size of foveal cones: ~1.66–2.56 μm or ~0.34–0.53 arcmin with typical fixational eye motion for normal observers. The full implementation, with real-time digital image registration, corrected the residual eye motion after optical stabilization with an accuracy of ~0.20–0.25 μm or ~0.04–0.05 arcmin RMS, which to our knowledge is more accurate than any method previously reported.

© 2014 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(330.2210) Vision, color, and visual optics : Vision - eye movements
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Ophthalmology Applications

History
Original Manuscript: May 30, 2014
Revised Manuscript: July 25, 2014
Manuscript Accepted: July 28, 2014
Published: August 26, 2014

Virtual Issues
September 4, 2014 Spotlight on Optics

Citation
Qiang Yang, Jie Zhang, Koji Nozato, Kenichi Saito, David R. Williams, Austin Roorda, and Ethan A. Rossi, "Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy," Biomed. Opt. Express 5, 3174-3191 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-9-3174


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997). [CrossRef] [PubMed]
  2. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express10(9), 405–412 (2002). [CrossRef] [PubMed]
  3. D. R. Williams, “Imaging single cells in the living retina,” Vision Res.51(13), 1379–1396 (2011). [CrossRef] [PubMed]
  4. E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.)25(3), 301–308 (2011). [CrossRef] [PubMed]
  5. S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004). [CrossRef] [PubMed]
  6. M. Rolfs, “Microsaccades: Small steps on a long way,” Vision Res.49(20), 2415–2441 (2009). [CrossRef] [PubMed]
  7. E. A. Rossi, R. L. Achtman, A. Guidon, D. R. Williams, A. Roorda, D. Bavelier, and J. Carroll, “Visual Function and Cortical Organization in Carriers of Blue Cone Monochromacy,” PLoS ONE8(2), e57956 (2013). [CrossRef] [PubMed]
  8. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express14(2), 487–497 (2006). [CrossRef] [PubMed]
  9. S. B. Stevenson and A. RoordaF. Manns, P. G. Söderberg, A. Ho, B. E. Stuck, and M. Belkin, eds., “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” in Ophthalmic Technologies XV,Proceedings of SPIE, F. Manns, P. G. Söderberg, A. Ho, B. E. Stuck, and M. Belkin, eds. (SPIE, Bellingham, WA, 2005), Vol. 5688, pp. 145–151. [CrossRef]
  10. D. Ott and R. Eckmiller, “Ocular torsion measured by TV- and scanning laser ophthalmoscopy during horizontal pursuit in humans and monkeys,” Invest. Ophthalmol. Vis. Sci.30(12), 2512–2520 (1989). [PubMed]
  11. D. Ott and M. Lades, “Measurement of eye rotations in three dimensions and the retinal stimulus projection using scanning laser ophthalmoscopy,” Ophthalmic Physiol. Opt.10(1), 67–71 (1990). [CrossRef] [PubMed]
  12. D. Ott and W. J. Daunicht, “Eye-Movement Measurement with the scanning laser ophthalmoscope,” Clin. Vis. Sci.7, 551–556 (1992).
  13. M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res.36(13), 1987–1994 (1996). [CrossRef] [PubMed]
  14. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A24(5), 1313–1326 (2007). [CrossRef] [PubMed]
  15. A. Dubra and Z. Harvey, “Registration of 2D Images from Fast Scanning Ophthalmic Instruments,” in Biomedical Image Registration, B. Fischer, B. M. Dawant, and C. Lorenz, eds., Lecture Notes in Computer Science No. 6204 (Springer Berlin Heidelberg, 2010), pp. 60–71.
  16. R. Dodge and T. S. Cline, “The angle velocity of eye movements,” Psychol. Rev.8(2), 145–157 (1901). [CrossRef]
  17. J. Nachmias, “Two-Dimensional Motion of the Retinal Image during Monocular Fixation,” J. Opt. Soc. Am.49(9), 901–908 (1959). [CrossRef] [PubMed]
  18. L. A. Riggs, J. C. Armington, and F. Ratliff, “Motions of the Retinal Image during Fixation,” J. Opt. Soc. Am.44(4), 315–321 (1954). [CrossRef] [PubMed]
  19. L. A. Riggs and A. M. Schick, “Accuracy of retinal image stabilization achieved with a plane mirror on a tightly fitting contact lens,” Vision Res.8(2), 159–169 (1968). [CrossRef] [PubMed]
  20. R. M. Jones and T. Tulunay-Keesey, “Accuracy of image stabilization by an optical-electronic feedback system,” Vision Res.15(1), 57–61 (1975). [CrossRef] [PubMed]
  21. T. N. Cornsweet and H. D. Crane, “Accurate two-dimensional eye tracker using first and fourth Purkinje images,” J. Opt. Soc. Am.63(8), 921–928 (1973). [CrossRef] [PubMed]
  22. H. D. Crane and C. M. Steele, “Generation-V dual-Purkinje-image eyetracker,” Appl. Opt.24(4), 527 (1985). [CrossRef] [PubMed]
  23. F. Santini, G. Redner, R. Iovin, and M. Rucci, “EyeRIS: a general-purpose system for eye-movement-contingent display control,” Behav. Res. Methods39(3), 350–364 (2007). [CrossRef] [PubMed]
  24. J. B. Mulligan, in Recovery of Motion Parameters from Distortions in Scanned Images, J. Le Moigne, ed. (NASA Goddard Space Flight Center, 1997), pp. 281–292.
  25. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express15(21), 13731–13744 (2007). [CrossRef] [PubMed]
  26. L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci.12(8), 967–969 (2009). [CrossRef] [PubMed]
  27. D. W. Arathorn, S. B. Stevenson, Q. Yang, P. Tiruveedhula, and A. Roorda, “How the unstable eye sees a stable and moving world,” J. Vis.13(10), 22 (2013). [CrossRef] [PubMed]
  28. W. M. Harmening, W. S. Tuten, A. Roorda, and L. C. Sincich, “Mapping the Perceptual Grain of the Human Retina,” J. Neurosci.34(16), 5667–5677 (2014). [CrossRef] [PubMed]
  29. Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express18(17), 17841–17858 (2010). [CrossRef] [PubMed]
  30. C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, and A. Roorda, “High-speed, image-based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express3(10), 2611–2622 (2012). [CrossRef] [PubMed]
  31. K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO,” Biomed. Opt. Express3(11), 2950–2963 (2012). [CrossRef] [PubMed]
  32. B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, and J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express4(1), 51–65 (2013). [CrossRef] [PubMed]
  33. R. D. Ferguson, Z. Zhong, D. X. Hammer, M. Mujat, A. H. Patel, C. Deng, W. Zou, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking,” J. Opt. Soc. Am. A27(11), A265–A277 (2010). [CrossRef] [PubMed]
  34. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express14(8), 3354–3367 (2006). [CrossRef] [PubMed]
  35. A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(6), 1757–1768 (2011). [CrossRef] [PubMed]
  36. E. A. Rossi, P. Rangel-Fonseca, K. Parkins, W. Fischer, L. R. Latchney, M. A. Folwell, D. R. Williams, A. Dubra, and M. M. Chung, “In vivo imaging of retinal pigment epithelium cells in age related macular degeneration,” Biomed. Opt. Express4(11), 2527–2539 (2013). [CrossRef] [PubMed]
  37. D. H. Brainard, “The psychophysics toolbox,” Spat. Vis.10(4), 433–436 (1997). [CrossRef] [PubMed]
  38. M. Kleiner, D. Brainard, and D. G. Pelli, “What’s new in Psychtoolbox-3?” Perception36, 1 (2007).
  39. D. G. Pelli, “The VideoToolbox software for visual psychophysics: Transforming numbers into movies,” Spat. Vis.10(4), 437–442 (1997). [CrossRef] [PubMed]
  40. D. (I.P.V.) Troxler, “Über das Verschwinden gegebener Gegenstände innerhalb unseres Gesichtskreises. [On the disappearance of given objects from our visual field],” Ophthalmol. Bibl. Ger.2, 1–53 (1804).
  41. L. A. Riggs, F. Ratliff, J. C. Cornsweet, and T. N. Cornsweet, “The Disappearance of Steadily Fixated Visual Test Objects,” J. Opt. Soc. Am.43(6), 495–501 (1953). [CrossRef] [PubMed]
  42. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett.33(2), 156–158 (2008). [CrossRef] [PubMed]
  43. J. B. Mulligan, “Image processing for improved eye-tracking accuracy,” Behav. Res. Methods Instrum. Comput.29(1), 54–65 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPEG (1120 KB)     
» Media 2: MPEG (2482 KB)     
» Media 3: MPEG (580 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited