OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 1 — Aug. 2, 2010
  • pp: 176–185

Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm

V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 1, pp. 176-185 (2010)
http://dx.doi.org/10.1364/BOE.1.000176


View Full Text Article

Enhanced HTML    Acrobat PDF (1801 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

One of the present challenges in optical coherence tomography (OCT) is the visualization of deeper structural morphology in biological tissues. Owing to a reduced scattering, a larger imaging depth can be achieved by using longer wavelengths. In this work, we analyze the OCT imaging depth at wavelengths around 1300 nm and 1600 nm by comparing the scattering coefficient and OCT imaging depth for a range of Intralipid concentrations at constant water content. We observe an enhanced OCT imaging depth for 1600 nm compared to 1300 nm for Intralipid concentrations larger than 4 vol.%. For higher Intralipid concentrations, the imaging depth enhancement reaches 30%. The ratio of scattering coefficients at the two wavelengths is constant over a large range of scattering coefficients and corresponds to a scattering power of 2.8 ± 0.1. Based on our results we expect for biological tissues an increase of the OCT imaging depth at 1600 nm compared to 1300 nm for samples with high scattering power and low water content.

© 2010 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(290.7050) Scattering : Turbid media

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: May 26, 2010
Revised Manuscript: July 2, 2010
Manuscript Accepted: July 3, 2010
Published: July 16, 2010

Virtual Issues
Advances in Optical Coherence Tomography, Photoacoustic Imaging, and Microscopy (2010) Biomedical Optics Express

Citation
V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen, "Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm," Biomed. Opt. Express 1, 176-185 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-1-176


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007). [CrossRef] [PubMed]
  3. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30(9), 1015–1017 (2005). [CrossRef] [PubMed]
  4. F. J. van der Meer, D. J. Faber, M. C. G. Aalders, and T. G. van Leeuwen, “Identification of plaque constituents using quantitative measurements of tissue optical properties by optical coherence tomography,” Eur. Heart J. 24(5), 152 (2003). [CrossRef]
  5. M. E. J. van Velthoven, D. J. Faber, F. D. Verbraak, T. G. van Leeuwen, and M. D. de Smet, “Recent developments in optical coherence tomography for imaging the retina,” Prog. Retin. Eye Res. 26(1), 57–77 (2007). [CrossRef] [PubMed]
  6. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13(9), 3252–3258 (2005). [CrossRef] [PubMed]
  7. B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12(4), 041211 (2007). [CrossRef] [PubMed]
  8. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994). [CrossRef] [PubMed]
  9. Y. Yasuno, Y. J. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007). [CrossRef] [PubMed]
  10. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005). [CrossRef] [PubMed]
  11. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12(3), 555–563 (1973). [CrossRef] [PubMed]
  12. B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-Doped Fiber Sources,” J. Biomed. Opt. 3(1), 76–79 (1998). [CrossRef]
  13. H. Kakuma, K. Ohbayashi, and Y. Arakawa, “Optical imaging of hard and soft dental tissues using discretely swept optical frequency domain reflectometry optical coherence tomography at wavelengths from 1560 to 1600 nm,” J. Biomed. Opt. 13(1), 014012 (2008). [CrossRef] [PubMed]
  14. U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth,” Opt. Express 16(24), 19712–19723 (2008). [CrossRef] [PubMed]
  15. L. Carrion, M. Lestrade, Z. Xu, G. Touma, R. Maciejko, and M. Bertrand, “Comparative study of optical sources in the near infrared for optical coherence tomography applications,” J. Biomed. Opt. 12(1), 014017 (2007). [CrossRef] [PubMed]
  16. A. W. Sainter, T. A. King, and M. R. Dickinson, “Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography,” J. Biomed. Opt. 9(1), 193–199 (2004). [CrossRef] [PubMed]
  17. J. M. Schmitt, A. Knuttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32(30), 6032–6042 (1993). [CrossRef]
  18. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353–4365 (2004). [CrossRef] [PubMed]
  19. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Differential absorption imaging with optical coherence tomography,” J. Opt. Soc. Am. A 15(9), 2288–2296 (1998). [CrossRef]
  20. Refractive index database, http://refractiveindex.info.
  21. A. Giusto, R. Saija, M. A. Iatì, P. Denti, F. Borghese, and O. I. Sindoni, “Optical properties of high-density dispersions of particles: application to intralipid solutions,” Appl. Opt. 42(21), 4375–4380 (2003). [CrossRef] [PubMed]
  22. G. Zaccanti, S. D. Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42(19), 4023–4030 (2003). [CrossRef] [PubMed]
  23. J. Kalkman, A. V. Bykov, D. J. Faber, and T. G. van Leeuwen, “Multiple and dependent scattering effects in Doppler optical coherence tomography,” Opt. Express 18(4), 3883–3892 (2010). [CrossRef] [PubMed]
  24. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991). [CrossRef]
  25. C. Chen, J. Q. Lu, H. F. Ding, K. M. Jacobs, Y. Du, and X. H. Hu, “A primary method for determination of optical parameters of turbid samples and application to intralipid between 550 and 1630 nm,” Opt. Express 14(16), 7420–7435 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited