OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 1 — Aug. 2, 2010
  • pp: 186–200

A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization

Jesung Park, Javier A. Jo, Sebina Shrestha, Paritosh Pande, Qiujie Wan, and Brian E. Applegate  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 1, pp. 186-200 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (52579 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Most pathological conditions elicit changes in the tissue optical response that may be interrogated by one or more optical imaging modalities. Any single modality typically only furnishes an incomplete picture of the tissue optical response, hence an approach that integrates complementary optical imaging modalities is needed for a more comprehensive non-destructive and minimally-invasive tissue characterization. We have developed a dual-modality system, incorporating optical coherence tomography (OCT) and fluorescence lifetime imaging microscopy (FLIM), that is capable of simultaneously characterizing the 3-D tissue morphology and its biochemical composition. The Fourier domain OCT subsystem, at an 830 nm center wavelength, provided high-resolution morphological volumetric tissue images with an axial and lateral resolution of 7.3 and 13.4 µm, respectively. The multispectral FLIM subsystem, based on a direct pulse-recording approach (upon 355 nm laser excitation), provided two-dimensional superficial maps of the tissue autofluorescence intensity and lifetime at three customizable emission bands with 100 µm lateral resolution. Both subsystems share the same excitation/illumination optical path and are simultaneously raster scanned on the sample to generate coregistered OCT volumes and FLIM images. The developed OCT/FLIM system was capable of a maximum A-line rate of 59 KHz for OCT and a pixel rate of up to 30 KHz for FLIM. The dual-modality system was validated with standard fluorophore solutions and subsequently applied to the characterization of two biological tissue types: postmortem human coronary atherosclerotic plaques, and in vivo normal and cancerous hamster cheek pouch epithelial tissue.

© 2010 OSA

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Multimodal Imaging

Original Manuscript: June 4, 2010
Revised Manuscript: July 9, 2010
Manuscript Accepted: July 9, 2010
Published: July 16, 2010

Virtual Issues
Advances in Optical Coherence Tomography, Photoacoustic Imaging, and Microscopy (2010) Biomedical Optics Express

Jesung Park, Javier A. Jo, Sebina Shrestha, Paritosh Pande, Qiujie Wan, and Brian E. Applegate, "A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization," Biomed. Opt. Express 1, 186-200 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Balas, “Review of biomedical optical imaging-a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis,” Meas. Sci. Technol. 20(10), 104020 (2009). [CrossRef]
  2. C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett. 88(5), 053901 (2006). [CrossRef]
  3. J. K. Barton, F. Guzman, and A. Tumlinson, “Dual modality instrument for simultaneous optical coherence tomography imaging and fluorescence spectroscopy,” J. Biomed. Opt. 9(3), 618–623 (2004). [CrossRef] [PubMed]
  4. K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J Biophotonics 2(6-7), 389–397 (2009). [CrossRef] [PubMed]
  5. C. A. Patil, N. Bosschaart, M. D. Keller, T. G. van Leeuwen, and A. Mahadevan-Jansen, “Combined Raman spectroscopy and optical coherence tomography device for tissue characterization,” Opt. Lett. 33(10), 1135–1137 (2008). [CrossRef] [PubMed]
  6. P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85(1), 572–580 (2003). [CrossRef] [PubMed]
  7. A. R. Tumlinson, L. P. Hariri, U. Utzinger, and J. K. Barton, “Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement,” Appl. Opt. 43(1), 113–121 (2004). [CrossRef] [PubMed]
  8. L. P. Hariri, A. R. Tumlinson, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton, “Endoscopic optical coherence tomography and laser-induced fluorescence spectroscopy in a murine colon cancer model,” Lasers Surg. Med. 38(4), 305–313 (2006). [CrossRef] [PubMed]
  9. Z. G. Wang, D. B. Durand, M. Schoenberg, and Y. T. Pan, “Fluorescence guided optical coherence tomography for the diagnosis of early bladder cancer in a rat model,” J. Urol. 174(6), 2376–2381 (2005). [CrossRef] [PubMed]
  10. J. Fujimoto, and W. Drexler, Introduction to Optical Coherence Tomography, Optical Coherence Tomography: Technology and Applications (Springer, Berlin, Germany, 2008).
  11. Y. Sun, R. Liu, D. S. Elson, C. W. Hollars, J. A. Jo, J. Park, Y. Sun, and L. Marcu, “Simultaneous time- and wavelength-resolved fluorescence spectroscopy for near real-time tissue diagnosis,” Opt. Lett. 33(6), 630–632 (2008). [CrossRef] [PubMed]
  12. S. Shrestha, B. E. Applegate, J. Park, X. Xiao, P. Pande, and J. A. Jo, “A Novel High-Speed Multispectral Fluorescence Lifetime Imaging Implementation for in vivo Applications,” Opt. Lett. in press.
  13. R. M. Clegg, Fluorescence lifetime-resolved imaging, FLIM microscopy in biology and medicine (CRC Press, Boca Raton, Fla., 2010).
  14. D. N. Stephens, J. Park, Y. Sun, T. Papaioannou, and L. Marcu, “Intraluminal fluorescence spectroscopy catheter with ultrasound guidance,” J. Biomed. Opt. 14(3), 030505 (2009). [CrossRef] [PubMed]
  15. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A. 89(4), 1271–1275 (1992). [CrossRef] [PubMed]
  16. D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, and N. Ramanujam, “Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH,” Cancer Res. 65(19), 8766–8773 (2005). [CrossRef] [PubMed]
  17. J. A. Jo, Q. Y. Fang, T. Papaioannou, and L. Marcu, “Fast model-free deconvolution of fluorescence decay for analysis of biological systems,” J. Biomed. Opt. 9(4), 743–752 (2004). [CrossRef] [PubMed]
  18. Q. Y. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75(1), 151–162 (2004). [CrossRef]
  19. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992). [CrossRef] [PubMed]
  20. J. L. Brandon, C. J. Conti, L. S. Goldstein, J. DiGiovanni, and I. B. Gimenez-Conti, “Carcinogenic effects of MGP-7 and B[a]P on the hamster cheek pouch,” Toxicol. Pathol. 37(6), 733–740 (2009). [CrossRef] [PubMed]
  21. P. Thomas, P. Pande, F. Clubb, J. Adame, and J. A. Jo, “Biochemical imaging of human atherosclerotic plaques with fluorescence lifetime angioscopy,” Photochem. Photobiol. 86(3), 727–731 (2010). [CrossRef] [PubMed]
  22. K. Arakawa, K. Isoda, T. Ito, K. Nakajima, T. Shibuya, and F. Ohsuzu, “Fluorescence analysis of biochemical constituents identifies atherosclerotic plaque with a thin fibrous cap,” Arterioscler. Thromb. Vasc. Biol. 22(6), 1002–1007 (2002). [CrossRef] [PubMed]
  23. L. Marcu, J. A. Jo, Q. Fang, T. Papaioannou, T. Reil, J. H. Qiao, J. D. Baker, J. A. Freischlag, and M. C. Fishbein, “Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy,” Atherosclerosis 204(1), 156–164 (2009). [CrossRef] [PubMed]
  24. N. G. Ghoshal and H. S. Bal, “Histomorphology of the hamster cheek pouch,” Lab. Anim. 24(3), 228–233 (1990). [CrossRef] [PubMed]
  25. D. G. Farwell, J. D. Meier, J. Park, Y. Sun, H. Coffman, B. Poirier, J. Phipps, S. Tinling, D. J. Enepekides, and L. Marcu, “Time-resolved fluorescence spectroscopy as a diagnostic technique of oral carcinoma: Validation in the hamster buccal pouch model,” Arch. Otolaryngol. Head Neck Surg. 136(2), 126–133 (2010). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2538 KB)     
» Media 2: AVI (2810 KB)     
» Media 3: AVI (3385 KB)     
» Media 4: AVI (3844 KB)     
» Media 5: AVI (3364 KB)     
» Media 6: AVI (2739 KB)     
» Media 7: AVI (3638 KB)     
» Media 8: AVI (3905 KB)     
» Media 9: AVI (3090 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited