OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 1 — Aug. 2, 2010
  • pp: 201–208

Quantitative Photoacoustic Image Reconstruction using Fluence Dependent Chromophores

B.T. Cox, J.G. Laufer, and P.C. Beard  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 1, pp. 201-208 (2010)
http://dx.doi.org/10.1364/BOE.1.000201


View Full Text Article

Enhanced HTML    Acrobat PDF (763 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In biomedical photoacoustic imaging the images are proportional to the absorbed optical energy density, and not the optical absorption, which makes it difficult to obtain a quantitatively accurate image showing the concentration of a particular absorbing chromophore from photoacoustic measurements alone. Here it is shown that the spatially varying concentration of a chromophore whose absorption becomes zero above a threshold light fluence can be estimated from photoacoustic images obtained at increasing illumination strengths. This technique provides an alternative to model-based multiwavelength approaches to quantitative photoacoustic imaging, and a new approach to photoacoustic molecular and functional imaging.

© 2010 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Photoacoustic Imaging and Spectroscopy

History
Original Manuscript: May 6, 2010
Revised Manuscript: July 8, 2010
Manuscript Accepted: July 8, 2010
Published: July 16, 2010

Virtual Issues
Advances in Optical Coherence Tomography, Photoacoustic Imaging, and Microscopy (2010) Biomedical Optics Express

Citation
B. T. Cox, J. G. Laufer, and P. C. Beard, "Quantitative photoacoustic image reconstruction using fluence dependent chromophores," Biomed. Opt. Express 1, 201-208 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-1-201


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke and G. A. Kruger, "Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz - feasibility study," Radiology 216, 279-283 (2000).
  2. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotechnol. 21(7), 803-806 (2003).
  3. E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, "In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy," Phys. Med. Biol. 54, 1035-1046 (2009).
  4. L. V. Wang, ed., Photoacoustic Imaging and Spectroscopy, (CRC Press, 2009).
  5. A. A. Oraevsky and L.V. Wang, eds., Photons Plus Ultrasound: Imaging and Sensing, Proc. SPIE 7564756401 (2010).
  6. B. T. Cox, S. R. Arridge, K. Köstli, and P. C. Beard, "Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method," Appl. Opt. 45, 1866-1875 (2006).
  7. H. Jiang, Z. Yuan and X. Gu, "Spatially varying optical and acoustic property reconstruction using finite-elementbased photoacoustic tomography," J. Opt. Soc. Am. A 23(4), 878-888 (2006).
  8. B. T. Cox, S. R. Arridge, and P. C. Beard, "Estimating chromophore distributions from multiwavelength photoacoustic images," J. Opt. Soc. Am. A 26, 443-455 (2009).
  9. J. G. Laufer, B. T. Cox, E. Z. Zhang, and P. C. Beard, "Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme," Appl. Opt. 49, 1219-1233 (2010).
  10. L. Yao, Y. Sun, and H. Jiang, "Transport-based quantitative photoacoustic tomography: simulations and experiments," Phys. Med. Biol. 55, 1917-1934 (2010).
  11. G. Bal and G. Uhlmann, "Inverse diffusion theory of photoacoustics," arXiv: 0910.2503v0911 [math.AP] (2009).
  12. A. Rosenthal, D. Razansky and and V. Ntziachristos, "Quantitative Optoacoustic Signal Extraction Using Sparse Signal Representation," IEEE Trans. Med. Imag. 28(12), 1997-2006 (2009).
  13. B. T. Cox, J. G. Laufer, and P. C. Beard, "The challenges for quantitative photoacoustic imaging," Proc. SPIE 7177, 717713 (2009).
  14. A. Marcano, N. Melikechi and G. Verde, "Shift of the absorption spectrum of organic dyes due to saturation," J. Chem. Phys. 113(14), 5830-5835 (2000).
  15. A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera, "Cyanines during the 1990s: A review," Chem. Rev. 100, 1973-2011 (2000).
  16. C. Eggeling, J. Widengren, R. Rigler, C. A. M. Seidel, "Photobleaching of Fluorescent Dyes under Conditions used for Single-Molecule Detection: Evidence of Two-Step Photolysis," Anal. Chem. 70(13), 2651-2659 (1998).
  17. S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C. R. C. Wang, "The Shape Transition of Gold Nanorods," Langmuir 15(3), 701-709 (1998).
  18. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, "Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses," J. Phys. Chem. B 104, 6152-6163 (2000),
  19. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modelling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
  20. J. L. Jiménez Pérez, R. Gutierrez Fuentes, J. F. Sanchez Ramirez, and A. Cruz-Orea, "Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy," Eur. Phys. J. Spc. Top. 153, 159161 (2008).
  21. J. Alper and K. Hamad-Schifferli, "Effect of Ligands on Thermal Dissipation from Gold Nanorods," Langmuir 26(6), 37863789 (2010).
  22. B. T. Cox,"Quantitative Photoacoustic Tomography with Fluence-Dependent Absorbers," in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BWG3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited