OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 1 — Aug. 2, 2010
  • pp: 223–235

Compositional-prior-guided image reconstruction algorithm for multi-modality imaging

Qianqian Fang, Richard H. Moore, Daniel B. Kopans, and David A. Boas  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 1, pp. 223-235 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1608 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The development of effective multi-modality imaging methods typically requires an efficient information fusion model, particularly when combining structural images with a complementary imaging modality that provides functional information. We propose a composition-based image segmentation method for X-ray digital breast tomosynthesis (DBT) and a structural-prior-guided image reconstruction for a combined DBT and diffuse optical tomography (DOT) breast imaging system. Using the 3D DBT images from 31 clinically measured healthy breasts, we create an empirical relationship between the X-ray intensities for adipose and fibroglandular tissue. We use this relationship to then segment another 58 healthy breast DBT images from 29 subjects into compositional maps of different tissue types. For each breast, we build a weighted-graph in the compositional space and construct a regularization matrix to incorporate the structural priors into a finite-element-based DOT image reconstruction. Use of the compositional priors enables us to fuse tissue anatomy into optical images with less restriction than when using a binary segmentation. This allows us to recover the image contrast captured by DOT but not by DBT. We show that it is possible to fine-tune the strength of the structural priors by changing a single regularization parameter. By estimating the optical properties for adipose and fibroglandular tissue using the proposed algorithm, we found the results are comparable or superior to those estimated with expert-segmentations, but does not involve the time-consuming manual selection of regions-of-interest.

© 2010 OSA

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(170.3830) Medical optics and biotechnology : Mammography
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Optics in Cancer Research

Original Manuscript: June 2, 2010
Revised Manuscript: July 10, 2010
Manuscript Accepted: July 13, 2010
Published: July 16, 2010

Virtual Issues
Optical Imaging and Spectroscopy (2010) Biomedical Optics Express

Qianqian Fang, Richard H. Moore, Daniel B. Kopans, and David A. Boas, "Compositional-prior-guided image reconstruction algorithm for multi-modality imaging," Biomed. Opt. Express 1, 223-235 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Townsend and S. R. Cherry, “Combining anatomy and function: the path to true image fusion,” Eur. Radiol. 11(10), 1968–1974 (2001). [CrossRef] [PubMed]
  2. F. S. Azar, and X. Intes, eds., Translational multimodality Optical Imaging, Artech House, Norwood (2008)
  3. J. Czernin, and H. R. Schelbert, eds., PET/CT in cancer patient management. The Journal of Nuclear Medicine, 48 (2007)
  4. M. Charron, T. Beyer, N. N. Bohnen, P. E. Kinahan, M. Dachille, J. Jerin, R. Nutt, C. C. Meltzer, V. Villemagne, and D. W. Townsend, “Image analysis in patients with cancer studied with a combined PET and CT scanner,” Clin. Nucl. Med. 25(11), 905–910 (2000). [CrossRef] [PubMed]
  5. M. S. Judenhofer, H. F. Wehrl, D. F. Newport, C. Catana, S. B. Siegel, M. Becker, A. Thielscher, M. Kneilling, M. P. Lichy, M. Eichner, K. Klingel, G. Reischl, S. Widmaier, M. Röcken, R. E. Nutt, H.-J. Machulla, K. Uludag, S. R. Cherry, C. D. Claussen, and B. J. Pichler, “Simultaneous PET-MRI: a new approach for functional and morphological imaging,” Nat. Med. 14(4), 459–465 (2008). [CrossRef] [PubMed]
  6. Z. Keidar, O. Israel, and Y. Krausz, “SPECT/CT in tumor imaging: technical aspects and clinical applications,” Semin. Nucl. Med. 33(3Issue 3), 205–218 (2003). [CrossRef] [PubMed]
  7. M. Doubrovin, I. Serganova, P. Mayer-Kuckuk, V. Ponomarev, and R. G. Blasberg, “Multimodality in vivo molecular-genetic imaging,” Bioconjug. Chem. 15(6), 1376–1388 (2004). [CrossRef] [PubMed]
  8. C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007). [CrossRef] [PubMed]
  9. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001). [CrossRef]
  10. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005). [CrossRef] [PubMed]
  11. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 209–210 (2001). [CrossRef] [PubMed]
  12. D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50(11), 2429–2449 (2005). [CrossRef] [PubMed]
  13. P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005). [CrossRef] [PubMed]
  14. L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt. 46(17), 3628–3638 (2007). [CrossRef] [PubMed]
  15. S. P. Poplack, T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen, “Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms,” Radiology 243(2), 350–359 (2007). [CrossRef] [PubMed]
  16. Q. Zhu, N. G. Chen, and S. H. Kurtzman, “Imaging tumor angiogenesis by use of combined near-infrared diffusive light and ultrasound,” Opt. Lett. 28(5), 337–339 (2003). [CrossRef] [PubMed]
  17. V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4(4), 347–354 (2002). [CrossRef] [PubMed]
  18. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006). [CrossRef] [PubMed]
  19. C. M. Carpenter, S. Srinivasan, B. W. Pogue, and K. D. Paulsen, “Methodology development for three-dimensional MR-guided near infrared spectroscopy of breast tumors,” Opt. Express 16(22), 17903–17914 (2008). [CrossRef] [PubMed]
  20. Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10(2), 024033 (2005). [CrossRef] [PubMed]
  21. Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1issue 1), 30–42 (2009). [CrossRef] [PubMed]
  22. Q. Fang, J. Selb, and S. A. Carp, “G. Boverman G, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, D. A. Boas, “Combined optical and x-ray tomosynthesis breast imaging,” Radiology . in press.
  23. B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10(5), 051504 (2005). [CrossRef] [PubMed]
  24. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003). [CrossRef] [PubMed]
  25. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007). [CrossRef] [PubMed]
  26. P. Hiltunen, S. J. D. Prince, and S. Arridge, “A combined reconstruction-classification method for diffuse optical tomography,” Phys. Med. Biol. 54(21), 6457–6476 (2009). [CrossRef] [PubMed]
  27. M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50(12), 2837–2858 (2005). [CrossRef] [PubMed]
  28. A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, Boca Raton, FL, Chapman and Hall/CRC (2004)
  29. E. Zastrow, S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. C. Hagness, “Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast,” IEEE Trans. Biomed. Eng. 55(12), 2792–2800 (2008). [CrossRef] [PubMed]
  30. K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, and J. R. Sullivan., “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging 14(3), 504–514 (1995). [CrossRef] [PubMed]
  31. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999). [CrossRef]
  32. P. K. Yalavarthy, D. R. Lynch, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Implementation of a computationally efficient least-squares algorithm for highly under-determined three-dimensional diffuse optical tomography problems,” Med. Phys. 35(5), 1682–1697 (2008). [CrossRef] [PubMed]
  33. F. Chung and K. Oden, “Weighted graph Laplacians and isoperimetric inequalities,” Pac. J. Math. 192(2), 257–273 (2000). [CrossRef]
  34. Q. Fang and D. Boas, “Tetrahedral mesh generation from volumetric binary and gray-scale images,” Proceedings of IEEE International Symposium on Biomedical Imaging 2009, 1142–1145 (2009).
  35. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt. 44(10), 1858–1869 (2005). [CrossRef] [PubMed]
  36. Q. Fang, P. M. Meaney, S. D. Geimer, A. V. Streltsov, and K. D. Paulsen, “Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation,” IEEE Trans. Med. Imaging 23(4), 475–484 (2004). [CrossRef] [PubMed]
  37. P. A. Yushkevich, J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, and G. Gerig, “User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability,” Neuroimage 31(3), 1116–1128 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited