OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 1 — Aug. 2, 2010
  • pp: 246–259

Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging

Ashwin B. Parthasarathy, S. M. Shams Kazmi, and Andrew K. Dunn  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 1, pp. 246-259 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2727 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser Speckle Contrast Imaging (LSCI) has become a widely used technique to image cerebral blood flow in vivo. However, the quantitative accuracy of blood flow changes measured through the thin skull has not been investigated thoroughly. We recently developed a new Multi Exposure Speckle Imaging (MESI) technique to image blood flow while accounting for the effect of scattering from static tissue elements. In this paper we present the first in vivo demonstration of the MESI technique. The MESI technique was used to image the blood flow changes in a mouse cortex following photothrombotic occlusion of the middle cerebral artery. The Multi Exposure Speckle Imaging technique was found to accurately estimate flow changes due to ischemia in mice brains in vivo. These estimates of these flow changes were found to be unaffected by scattering from thinned skull.

© 2010 Optical Society of America

OCIS Codes
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation

ToC Category:
Neuroscience and Brain Imaging

Original Manuscript: April 26, 2010
Revised Manuscript: June 28, 2010
Manuscript Accepted: July 1, 2010
Published: July 16, 2010

Ashwin B. Parthasarathy, S. M. Shams Kazmi, and Andrew K. Dunn, "Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging," Biomed. Opt. Express 1, 246-259 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Fercher and J. Briers, "Flow visualization by means of single-exposure speckle photography," Opt. Commun. 37(5), 326-330 (1981).
  2. A. Dunn, H. Bolay, M. Moskowitz, and D. Boas, "Dynamic Imaging of Cerebral Blood Flow using Laser Speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
  3. B. Weber, C. Burger, M. Wyss, G. von Schulthess, F. Scheffold, and A. Buck, "Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex," Eur. J. Neurosci. 20(10), 2664-2670 (2004).
  4. T. Durduran, M. Burnett, G. Yu, C. Zhou, D. Furuya, A. Yodh, J. Detre, and J. Greenberg, "Spatiotemporal Quantification of Cerebral Blood Flow during Functional Activation in Rat Somatosensory Cortex using Laser-Speckle Flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
  5. D. Atochin, J. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. Dunn, M. Moskowitz, P. Huang, and V. Muzykantov, "Mouse Model of Microembolic Stroke and Reperfusion," Stroke 35(9), 2177-2182 (2004).
  6. B. Ruth, "Measuring the steady-state value and the dynamics of the skin blood flow using the non-contact laser speckle method." Med. Eng. Phys. 16(2), 105-11 (1994).
  7. B. Choi, N. Kang, and J. Nelson, "Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model," Microvasc. Res. 68, 143-146 (2004).
  8. K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, A. Fukushima, and H. Abe, "Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers," Am. J. Opthalmol. 130(5), 606-610 (2000).
  9. J. Briers, "Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging," Physiol. Meas. 22, R35-R66 (2001).
  10. D. Boas and A. Dunn, "Laser speckle contrast imaging in biomedical optics," J. Biomed. Opt. 15, 011,109 (2010).
  11. R. Bandyopadhyay, A. Gittings, S. Suh, P. Dixon, and D. Durian, "Speckle-visibility spectroscopy: A tool to study time-varying dynamics," Rev. Sci. Instrum. 76, 093,110 (2005).Q1
  12. A. Parthasarathy, W. Tom, A. Gopal, X. Zhang, and A. Dunn, "Robust flow measurement with multi-exposure speckle imaging," Opt. Express 16(3), 1975-1989 (2008).
  13. R. Bonner and R. Nossal, "Model for laser Doppler measurements of blood flow in tissue," Appl. Opt. 20(12), 2097-2107 (1981).
  14. C. Ayata, A. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. Boas, and M. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24(7), 744-755 (2004).
  15. H. Shin, A. Dunn, P. Jones, D. Boas, M. Moskowitz, and C. Ayata, "Vasoconstrictive neurovascular coupling during focal ischemic depolarizations," J. Cereb. Blood Flow Metab. 26, 1018-1030 (2006).
  16. H. Shin, P. Jones, M. Garcia-Alloza, L. Borrelli, S. Greenberg, B. Bacskai, M. Frosch, B. Hyman, M. Moskowitz, and C. Ayata, "Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy," Brain 130(9), 2310 (2007).
  17. S. Yuan, A. Devor, D. Boas, and A. Dunn, "Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging," Appl. Opt. 44(10), 1823-1830 (2005).
  18. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, "Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging," Opt. Lett. 33(24), 2886-2888 (2008).
  19. D. D. Duncan and S. J. Kirkpatrick, "Can laser speckle flowmetry be made a quantitative tool?" J. Opt. Soc. Am. A 25(8), 2088-2094 (2008).
  20. P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, "Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging," Opt. Lett. 31(12), 1824-1826 (2006).
  21. P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, "Quantitative modeling of laser speckle imaging," Opt. Lett. 31(23), 3465-3467 (2006).
  22. P. Zakharov, A. Volker, M. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, "Dynamic laser speckle imaging of cerebral blood flow," Opt. Express 17, 13904-13917 (2009).
  23. W. Tom, A. Ponticorvo, and A. Dunn, "Efficient Processing of Laser Speckle Contrast Images," IEEE Trans. Med. Imaging 27(12), 1728-1738 (2008).
  24. P. Lemieux and D. Durian, "Investigating non-Gaussian scattering processes by using n th-order intensity correlation functions," J. Opt. Soc. Am. A 16(7), 1651-1664 (1999).
  25. D. Boas and A. Yodh, "Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation," Journal of Optical Society of America A 14(1), 192-215 (1997).
  26. B. Watson, W. Dietrich, R. Busto, M. Wachtel, and M. Ginsberg, "Induction of reproducible brain infarction by photochemically initiated thrombosis," Ann. Neurol. 17(5), 497-504 (1985).
  27. J. Lee, M. Park, Y. Kim, K. Moon, S. Joo, T. Kim, J. Kim, and S. Kim, "Photochemically induced cerebral ischemia in a mouse model," Surg. Neurol. 67(6), 620-625 (2007).
  28. C. Cheung, J. Culver, K. Takahashi, J. Greenberg, and A. Yodh, "In vivo cerebrovascular NIRS measurement," Phys. Med. Biol. 46, 2053-2065 (2001).
  29. T. Durduran, C. Zhou, B. Edlow, G. Yu, R. Choe, M. Kim, B. Cucchiara, M. Putt, Q. Shah, S. Kasner,  et al., "Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients," Opt. Express 17, 3884-3902 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited