OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 1 — Aug. 2, 2010
  • pp: 260–267

Actin-driven cell dynamics probed by Fourier transform light scattering

Huafeng Ding, Larry J. Millet, Martha U. Gillette, and Gabriel Popescu  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 1, pp. 260-267 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2459 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We applied the newly developed Fourier transform light scattering (FTLS) to study dynamic light scattering in single live cells, at a temporal scale of seconds to hours. The nanoscale cell fluctuations were measured with and without the active actin contribution. We found experimentally that the spatio-temporal signals rendered by FTLS reveal interesting cytoskeleton dynamics in glial cells (the predominant cell type in the nervous system). The active contribution of actin cytoskeleton was obtained by modulating its dynamic properties via Cytochalasin-D, a drug that inhibits actin polymerization/depolymerization.

© 2010 OSA

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(180.0180) Microscopy : Microscopy

ToC Category:
Cell Studies

Original Manuscript: June 1, 2010
Revised Manuscript: July 2, 2010
Manuscript Accepted: July 12, 2010
Published: July 22, 2010

Huafeng Ding, Larry J. Millet, Martha U. Gillette, and Gabriel Popescu, "Actin-driven cell dynamics probed by Fourier transform light scattering," Biomed. Opt. Express 1, 260-267 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “Elastic behavior of cross-linked and bundled actin networks,” Science 304(5675), 1301–1305 (2004). [CrossRef] [PubMed]
  2. T. D. Pollard and G. G. Borisy, “Cellular motility driven by assembly and disassembly of actin filaments,” Cell 112(4), 453–465 (2003). [CrossRef] [PubMed]
  3. J. A. Cooper and D. A. Schafer, “Control of actin assembly and disassembly at filament ends,” Curr. Opin. Cell Biol. 12(1), 97–103 (2000). [CrossRef] [PubMed]
  4. T. J. Mitchison and L. P. Cramer, “Actin-based cell motility and cell locomotion,” Cell 84(3), 371–379 (1996). [CrossRef] [PubMed]
  5. J. R. Kuhn and T. D. Pollard, “Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy,” Biophys. J. 88(2), 1387–1402 (2005). [CrossRef] [PubMed]
  6. T. D. Pollard, “The cytoskeleton, cellular motility and the reductionist agenda,” Nature 422(6933), 741–745 (2003). [CrossRef] [PubMed]
  7. K. J. Amann and T. D. Pollard, “Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 98(26), 15009–15013 (2001). [CrossRef] [PubMed]
  8. J. A. Theriot and T. J. Mitchison, “Actin microfilament dynamics in locomoting cells,” Nature 352(6331), 126–131 (1991). [CrossRef] [PubMed]
  9. J. A. Theriot, T. J. Mitchison, L. G. Tilney, and D. A. Portnoy, “The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization,” Nature 357(6375), 257–260 (1992). [CrossRef] [PubMed]
  10. D. Uttenweiler, C. Veigel, R. Steubing, C. Götz, S. Mann, H. Haussecker, B. Jähne, and R. H. A. Fink, “Motion determination in actin filament fluorescence images with a spatio-temporal orientation analysis method,” Biophys. J. 78(5), 2709–2715 (2000). [CrossRef] [PubMed]
  11. C. C. Wang, J. Y. Lin, H. C. Chen, and C. H. Lee, “Dynamics of cell membranes and the underlying cytoskeletons observed by noninterferometric widefield optical profilometry and fluorescence microscopy,” Opt. Lett. 31(19), 2873–2875 (2006). [CrossRef] [PubMed]
  12. N. Watanabe and T. J. Mitchison, “Single-molecule speckle analysis of actin filament turnover in lamellipodia,” Science 295(5557), 1083–1086 (2002). [CrossRef] [PubMed]
  13. T. G. Mason, K. Ganesan, J. H. vanZanten, D. Wirtz, and S. C. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79(17), 3282–3285 (1997). [CrossRef]
  14. A. Caspi, R. Granek, and M. Elbaum, “Diffusion and directed motion in cellular transport,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1), 011916 (2002). [CrossRef] [PubMed]
  15. L. H. Deng, X. Trepat, J. P. Butler, E. Millet, K. G. Morgan, D. A. Weitz, and J. J. Fredberg, “Fast and slow dynamics of the cytoskeleton,” Nat. Mater. 5(8), 636–640 (2006). [CrossRef] [PubMed]
  16. D. T. N. Chen, A. W. C. Lau, L. A. Hough, M. F. Islam, M. Goulian, T. C. Lubensky, and A. G. Yodh, “Fluctuations and rheology in active bacterial suspensions,” Phys. Rev. Lett. 99(14), 148302 (2007). [CrossRef] [PubMed]
  17. H. F. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008). [CrossRef] [PubMed]
  18. H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34(9), 1372–1374 (2009). [CrossRef] [PubMed]
  19. A. Matus, “Actin-based plasticity in dendritic spines,” Science 290(5492), 754–758 (2000). [CrossRef] [PubMed]
  20. K. Zito, G. Knott, G. M. G. Shepherd, S. Shenolikar, and K. Svoboda, “Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton,” Neuron 44(2), 321–334 (2004). [CrossRef] [PubMed]
  21. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006). [CrossRef] [PubMed]
  22. G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006). [CrossRef] [PubMed]
  23. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005). [CrossRef] [PubMed]
  24. G. Bassotti, V. Villanacci, S. Fisogni, E. Rossi, P. Baronio, C. Clerici, C. A. Maurer, G. Cathomas, and E. Antonelli, “Enteric glial cells and their role in gastrointestinal motor abnormalities: introducing the neuro-gliopathies,” World J. Gastroenterol. 13(30), 4035–4041 (2007). [PubMed]
  25. J. F. Casella, M. D. Flanagan, and S. Lin, “Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change,” Nature 293(5830), 302–305 (1981). [CrossRef] [PubMed]
  26. M. D. Flanagan and S. Lin, “Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin,” J. Biol. Chem. 255(3), 835–838 (1980). [PubMed]
  27. A. J. Levine and T. C. Lubensky, “One- and two-particle microrheology,” Phys. Rev. Lett. 85(8), 1774–1777 (2000). [CrossRef] [PubMed]
  28. A. W. C. Lau, B. D. Hoffman, A. Davies, J. C. Crocker, and T. C. Lubensky, “Microrheology, stress fluctuations, and active behavior of living cells,” Phys. Rev. Lett. 91(19), 198101 (2003). [CrossRef] [PubMed]
  29. P. Dieterich, R. Klages, R. Preuss, and A. Schwab, “Anomalous dynamics of cell migration,” Proc. Natl. Acad. Sci. U.S.A. 105(2), 459–463 (2008). [CrossRef] [PubMed]
  30. J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000). [CrossRef] [PubMed]
  31. T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995). [CrossRef] [PubMed]
  32. T. J. Feder, I. Brust-Mascher, J. P. Slattery, B. Baird, and W. W. Webb, “Constrained diffusion or immobile fraction on cell surfaces: a new interpretation,” Biophys. J. 70(6), 2767–2773 (1996). [CrossRef] [PubMed]
  33. J. Dai, H. P. Ting-Beall, and M. P. Sheetz, “The secretion-coupled endocytosis correlates with membrane tension changes in RBL 2H3 cells,” J. Gen. Physiol. 110(1), 1–10 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited