OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 1 — Aug. 2, 2010
  • pp: 278–284

Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system

Chulhong Kim, Todd N. Erpelding, Ladislav Jankovic, Michael D. Pashley, and Lihong V. Wang  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 1, pp. 278-284 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1022 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using a hand-held photoacoustic probe integrated with a clinical ultrasound array system, we successfully imaged objects deeply positioned in biological tissues. The optical contrasts were enhanced by methylene blue with a concentration of ~30 mM. The penetration depth reached ~5.2 cm in chicken breast tissue by using 650-nm wavelength, which is ~4.7 times the 1/e optical penetration depth. This imaging depth was achieved using a laser fluence on the tissue surface of only 3 mJ/cm2, which is 1/7 of the American National Standards Institute (ANSI) safety limit (20 mJ/cm2). The noise equivalent sensitivity at this depth was ~11 mM. Further, after intradermal injection of methylene blue in a rat, a sentinel lymph node was easily detected in vivo, beneath a 2-cm thick layer of chicken breast. Also, blood located 3.5 cm deep in the rat was clearly imaged with intrinsic contrast. We have photoacoustically guided insertion of a needle into a rat sentinel lymph node with accumulated methylene blue. These results highlight the clinical potential of photoacoustic image-guided identification and needle biopsy of sentinel lymph nodes for axillary staging in breast cancer patients.

© 2010 OSA

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Photoacoustic Imaging and Spectroscopy

Original Manuscript: June 15, 2010
Revised Manuscript: July 20, 2010
Manuscript Accepted: July 20, 2010
Published: July 26, 2010

Virtual Issues
Bio-Optics in Clinical Application, Nanotechnology, and Drug Discovery (2010) Biomedical Optics Express

Chulhong Kim, Todd N. Erpelding, Ladislav Jankovic, Michael D. Pashley, and Lihong V. Wang, "Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system," Biomed. Opt. Express 1, 278-284 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009). [CrossRef] [PubMed]
  2. S. Nie, D. T. Chiu, and R. N. Zare, “Probing individual molecules with confocal fluorescence microscopy,” Science 266(5187), 1018–1021 (1994). [CrossRef] [PubMed]
  3. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  5. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007). [CrossRef] [PubMed]
  6. C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110(5), 2756–2782 (2010). [CrossRef] [PubMed]
  7. R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5(4), 981–988 (1999). [CrossRef]
  8. G. Ku and L. V. Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,” Opt. Lett. 30(5), 507–509 (2005). [CrossRef] [PubMed]
  9. J. J. Albertini, G. H. Lyman, C. Cox, T. Yeatman, L. Balducci, N. Ku, S. Shivers, C. Berman, K. Wells, D. Rapaport, A. Shons, J. Horton, H. Greenberg, S. Nicosia, R. Clark, A. Cantor, and D. S. Reintgen, “Lymphatic mapping and sentinel node biopsy in the patient with breast cancer,” JAMA 276(22), 1818–1822 (1996). [CrossRef] [PubMed]
  10. A. E. Giuliano, D. M. Kirgan, J. M. Guenther, and D. L. Morton, “Lymphatic mapping and sentinel lymphadenectomy for breast cancer,” Ann. Surg. 220(3), 391–401 (1994). [CrossRef] [PubMed]
  11. D. N. Krag, D. L. Weaver, J. C. Alex, and J. T. Fairbank, “Surgical resection and radiolocalization of the sentinel lymph node in breast cancer using a gamma probe,” Surg. Oncol. 2(6), 335–340 (1993). [CrossRef] [PubMed]
  12. C. Kim, K. H. Song, F. Gao, and L. V. Wang, “Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats--volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging,” Radiology 255(2), 442–450 (2010). [CrossRef] [PubMed]
  13. K. H. Song, C. Kim, C. M. Cobley, Y. Xia, and L. V. Wang, “Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model,” Nano Lett. 9(1), 183–188 (2009). [CrossRef] [PubMed]
  14. K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008). [CrossRef] [PubMed]
  15. T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology 256(1), 102–110 (2010). [CrossRef] [PubMed]
  16. M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010). [CrossRef] [PubMed]
  17. C. Kim, T. N. Erpelding, K. Maslov, L. Jankovic, W. J. Akers, L. Song, S. Achilefu, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Hand-held array-based photoacoustic probe for guiding needle biopsy of sentinel lymph nodes,” J. Biomed. Opt. In press.
  18. J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt. 15(2), 021309 (2010). [CrossRef] [PubMed]
  19. “American national standard for the safe use of lasers,” (ANSI. Inc., New York, 2002), pp. Standard Z136.131–2000.
  20. K. P. Köstli, M. Frenz, H. Bebie, and H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using fourier transform methods,” Phys. Med. Biol. 46(7), 1863–1872 (2001). [CrossRef] [PubMed]
  21. Y. Masannat, H. Shenoy, V. Speirs, A. Hanby, and K. Horgan, “Properties and characteristics of the dyes injected to assist axillary sentinel node localization in breast surgery,” Eur. J. Surg. Oncol. 32(4), 381–384 (2006). [CrossRef] [PubMed]
  22. G. Marquez, L. V. Wang, S. P. Lin, J. A. Schwartz, and S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37(4), 798–804 (1998). [CrossRef] [PubMed]
  23. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9(6), 1137–1142 (2004). [CrossRef] [PubMed]
  24. Z. Guo, L. Li, and L. V. Wang, “On the speckle-free nature of photoacoustic tomography,” Med. Phys. 36(9), 4084–4088 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited