OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 1 — Aug. 2, 2010
  • pp: 285–294

Wound healing monitoring using near infrared fluorescent fibrinogen

Chia-Pin Pan, Yihui Shi, Khalid Amin, Charles S. Greenberg, Zishan Haroon, and Gregory W. Faris  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 1, pp. 285-294 (2010)
http://dx.doi.org/10.1364/BOE.1.000285


View Full Text Article

Enhanced HTML    Acrobat PDF (2061 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a method for imaging the wound healing process with near infrared fluorescent fibrinogen. Wound healing studies were performed on a rat punch biopsy model. Fibrinogen was conjugated with a near infrared fluorescent dye and injected into the tail vein. Fibrinogen is a useful protein for tracking wound healing because it is involved in fibrin clot formation and formation of new provisional matrix through transglutaminase’s crosslinking activity. Strong fluorescence specific to the wound was observed and persisted for several days, indicating that the fibrinogen is converted to crosslinked fibrin. Administration of contrast agent simultaneously with wound creation led to primary labeling of the fibrin clot, indicating that the wound was in its early phase of healing. Administration on the following day showed labeling on the wound periphery, indicating location of formation of a new provisional matrix. This method may prove to be useful as a diagnostic for basic studies of the wound healing process, in drug development, or in clinical assessment of chronic wounds.

© 2010 OSA

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Molecular Imaging and Probe Development

History
Original Manuscript: June 16, 2010
Revised Manuscript: July 19, 2010
Manuscript Accepted: July 19, 2010
Published: July 27, 2010

Virtual Issues
Bio-Optics in Clinical Application, Nanotechnology, and Drug Discovery (2010) Biomedical Optics Express

Citation
Chia-Pin Pan, Yihui Shi, Khalid Amin, Charles S. Greenberg, Zishan Haroon, and Gregory W. Faris, "Wound healing monitoring using near infrared fluorescent fibrinogen," Biomed. Opt. Express 1, 285-294 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-1-285


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care 30(4), 903–910 (2007). [CrossRef] [PubMed]
  2. A. J. Singer and R. A. F. Clark, “Mechanisms of disease - Cutaneous wound healing,” N. Engl. J. Med. 341(10), 738–746 (1999). [CrossRef] [PubMed]
  3. R. Gillitzer and M. Goebeler, “Chemokines in cutaneous wound healing,” J. Leukoc. Biol. 69(4), 513–521 (2001). [PubMed]
  4. T. Kisseleva and D. A. Brenner, “Mechanisms of fibrogenesis,” Exp. Biol. Med. (Maywood) 233(2), 109–122 (2008). [CrossRef] [PubMed]
  5. D. Telci and M. Griffin, “Tissue transglutaminase (TG2)--a wound response enzyme,” Front. Biosci. 11(1), 867–882 (2006). [CrossRef] [PubMed]
  6. E. A. Verderio, T. S. Johnson, and M. Griffin, “Transglutaminases in wound healing and inflammation,” Prog. Exp. Tumor Res. 38, 89–114 (2005). [CrossRef] [PubMed]
  7. M. Griffin, R. Casadio, and C. M. Bergamini, “Transglutaminases: nature’s biological glues,” Biochem. J. 368(2), 377–396 (2002). [CrossRef] [PubMed]
  8. C. S. Greenberg, P. J. Birckbichler, and R. H. Rice, “Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues,” FASEB J. 5(15), 3071–3077 (1991). [PubMed]
  9. S. Kojima, K. Nara, and D. B. Rifkin, “Requirement for transglutaminase in the activation of latent transforming growth factor-beta in bovine endothelial cells,” J. Cell Biol. 121(2), 439–448 (1993). [CrossRef] [PubMed]
  10. M. Siegel, P. Strnad, R. Watts, K. Choi, B. Jabri, G. Adler, B. Omary, and C. Khosla, “Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury in the small intestine,” Gastroenterology 134(4), A151 (2008). [CrossRef]
  11. E. A. Zemskov, A. Janiak, J. Hang, A. Waghray, and A. M. Belkin, “The role of tissue transglutaminase in cell-matrix interactions,” Front. Biosci. 11(1), 1057–1076 (2006). [CrossRef] [PubMed]
  12. C. S. Greenberg, K. E. Achyuthan, M. J. Borowitz, and M. A. Shuman, “The transglutaminase in vascular cells and tissues could provide an alternate pathway for fibrin stabilization,” Blood 70(3), 702–709 (1987). [PubMed]
  13. D. C. Sane, T. L. Moser, A. M. M. Pippen, C. J. Parker, K. E. Achyuthan, and C. S. Greenberg, “Vitronectin is a substrate for transglutaminases,” Biochem. Biophys. Res. Commun. 157(1), 115–120 (1988). [CrossRef] [PubMed]
  14. D. H. Keast, C. K. Bowering, A. W. Evans, G. L. Mackean, C. Burrows, and L. D’Souza, “MEASURE: A proposed assessment framework for developing best practice recommendations for wound assessment,” Wound Repair Regen. 12(3Suppl), s1–s17 (2004). [CrossRef] [PubMed]
  15. R. Salcido, “The future of wound measurement,” Adv. Skin Wound Care 13(2), 54, 56 (2000). [PubMed]
  16. J. W. Griffin, E. A. Tolley, R. E. Tooms, R. A. Reyes, and J. K. Clifft, “A comparison of photographic and transparency-based methods for measuring wound surface area,” Phys. Ther. 73(2), 117–122 (1993). [PubMed]
  17. D. J. Leaper, “Angiography as an index of healing in experimental laparotomy wounds and colonic anastomoses,” Ann. R. Coll. Surg. Engl. 65(1), 20–23 (1983). [PubMed]
  18. M. J. Cobb, Y. C. Chen, R. A. Underwood, M. L. Usui, J. Olerud, and X. D. Li, “Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 11(6), 064002 (2006). [CrossRef] [PubMed]
  19. T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40(2), 85–94 (2005). [CrossRef] [PubMed]
  20. A. T. Yeh, B. S. Kao, W. G. Jung, Z. P. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004). [CrossRef] [PubMed]
  21. M. Dyson, S. Moodley, L. Verjee, W. Verling, J. Weinman, and P. Wilson, “Wound healing assessment using 20 MHz ultrasound and photography,” Skin Res. Technol. 9(2), 116–121 (2003). [CrossRef] [PubMed]
  22. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006). [CrossRef] [PubMed]
  23. G. Mazooz, T. Mehlman, T. S. Lai, C. S. Greenberg, M. W. Dewhirst, and M. Neeman, “Development of magnetic resonance imaging contrast material for in vivo mapping of tissue transglutaminase activity,” Cancer Res. 65(4), 1369–1375 (2005). [CrossRef] [PubMed]
  24. F. A. Jaffer, D. E. Sosnovik, M. Nahrendorf, and R. Weissleder, “Molecular imaging of myocardial infarction,” J. Mol. Cell. Cardiol. 41(6), 921–933 (2006). [CrossRef] [PubMed]
  25. F. A. Jaffer, C. H. Tung, J. J. Wykrzykowska, N. H. Ho, A. K. Houng, G. L. Reed, and R. Weissleder, “Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi,” Circulation 110(2), 170–176 (2004). [CrossRef] [PubMed]
  26. J. M. Hettasch, N. Bandarenko, J. L. Burchette, T. S. Lai, J. R. Marks, Z. A. Haroon, K. Peters, M. W. Dewhirst, J. D. Iglehart, and C. S. Greenberg, “Tissue transglutaminase expression in human breast cancer,” Lab. Invest. 75(5), 637–645 (1996). [PubMed]
  27. Z. A. Haroon, T. S. Lai, J. M. Hettasch, R. A. Lindberg, M. W. Dewhirst, and C. S. Greenberg, “Tissue transglutaminase is expressed as a host response to tumor invasion and inhibits tumor growth,” Lab. Invest. 79(12), 1679–1686 (1999). [PubMed]
  28. J. M. Kollman, L. Pandi, M. R. Sawaya, M. Riley, and R. F. Doolittle, “Crystal structure of human fibrinogen,” Biochemistry 48(18), 3877–3886 (2009). [CrossRef] [PubMed]
  29. Z. A. Haroon, J. M. Hettasch, T. S. Lai, M. W. Dewhirst, and C. S. Greenberg, “Tissue transglutaminase is expressed, active, and directly involved in rat dermal wound healing and angiogenesis,” FASEB J. 13(13), 1787–1795 (1999). [PubMed]
  30. S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010). [CrossRef] [PubMed]
  31. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006). [CrossRef] [PubMed]
  32. D. P. Pan, M. Pramanik, A. Senpan, X. M. Yang, K. H. Song, M. J. Scott, H. Y. Zhang, P. J. Gaffney, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic tomography with colloidal nanobeacons,” Angew. Chem. Int. Ed. Engl. 48(23), 4170–4173 (2009). [CrossRef] [PubMed]
  33. L. V. Wang, “Prospects of photoacoustic tomography,” Med. Phys. 35(12), 5758–5767 (2008). [CrossRef] [PubMed]
  34. K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008). [CrossRef] [PubMed]
  35. H. Thangarajah, D. Yao, E. I. Chang, Y. Shi, L. Jazayeri, I. N. Vial, R. D. Galiano, X. L. Du, R. Grogan, M. G. Galvez, M. Januszyk, M. Brownlee, and G. C. Gurtner, “The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13505–13510 (2009). [CrossRef] [PubMed]
  36. L. F. Brown, K. T. Yeo, B. Berse, T. K. Yeo, D. R. Senger, H. F. Dvorak, and L. van de Water, “Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing,” J. Exp. Med. 176(5), 1375–1379 (1992). [CrossRef] [PubMed]
  37. Y. Sugimura, M. Hosono, F. Wada, T. Yoshimura, M. Maki, and K. Hitomi, “Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: identification of peptide substrates for TGASE 2 and Factor XIIIA,” J. Biol. Chem. 281(26), 17699–17706 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited