OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 1 — Aug. 2, 2010
  • pp: 310–317

Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics

Francisco E. Robles, Shwetadwip Chowdhury, and Adam Wax  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 1, pp. 310-317 (2010)
http://dx.doi.org/10.1364/BOE.1.000310


View Full Text Article

Enhanced HTML    Acrobat PDF (1784 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hemoglobin (Hb) concentration and oxygen saturation levels are important biomarkers for various diseases, including cancer. Here, we investigate the ability to measure these parameters for tissue using spectroscopic optical coherence tomography (SOCT). A parallel frequency domain OCT system is used with detection spanning the visible region of the spectrum (450 nm to 700 nm). Oxygenated and deoxygenated Hb absorbing phantoms are analyzed. The results show that Hb concentrations as low as 1.2 g/L at 1 mm can be retrieved indicating that both normal and cancerous tissue measurements may be obtained. However, measurement of oxygen saturation levels may not be achieved with this approach.

© 2010 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(300.1030) Spectroscopy : Absorption

ToC Category:
Spectroscopic Diagnostics

History
Original Manuscript: June 1, 2010
Revised Manuscript: July 16, 2010
Manuscript Accepted: July 16, 2010
Published: July 27, 2010

Virtual Issues
Optical Imaging and Spectroscopy (2010) Biomedical Optics Express

Citation
Francisco E. Robles, Shwetadwip Chowdhury, and Adam Wax, "Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics," Biomed. Opt. Express 1, 310-317 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-1-310


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000). [CrossRef] [PubMed]
  2. A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointest. Endosc. 63(2), 257–261 (2006). [CrossRef] [PubMed]
  3. H. W. Wang, J. K. Jiang, C. H. Lin, J. K. Lin, G. J. Huang, and J. S. Yu, “Diffuse reflectance spectroscopy detects increased hemoglobin concentration and decreased oxygenation during colon carcinogenesis from normal to malignant tumors,” Opt. Express 17(4), 2805–2817 (2009). [CrossRef] [PubMed]
  4. A. Amelink, H. J. Sterenborg, M. P. Bard, S. A. Burgers, and S. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29(10), 1087–1089 (2004). [CrossRef] [PubMed]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  6. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000). [CrossRef] [PubMed]
  7. C. Xu, P. Carney, and S. Boppart, “Wavelength-dependent scattering in spectroscopic optical coherence tomography,” Opt. Express 13(14), 5450–5462 (2005). [CrossRef] [PubMed]
  8. F. E. Robles and A. Wax, “Measuring morphological features using light-scattering spectroscopy and Fourier-domain low-coherence interferometry,” Opt. Lett. 35(3), 360–362 (2010). [CrossRef] [PubMed]
  9. D. J. Faber, E. G. Mik, M. C. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28(16), 1436–1438 (2003). [CrossRef] [PubMed]
  10. N. Bosschaart, M. C. Aalders, D. J. Faber, J. J. Weda, M. J. van Gemert, and T. G. van Leeuwen, “Quantitative measurements of absorption spectra in scattering media by low-coherence spectroscopy,” Opt. Lett. 34(23), 3746–3748 (2009). [CrossRef] [PubMed]
  11. F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009). [CrossRef] [PubMed]
  12. R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt. 14(6), 064030 (2009). [CrossRef] [PubMed]
  13. R. N. Graf, W. J. Brown, and A. Wax, “Parallel frequency-domain optical coherence tomography scatter-mode imaging of the hamster cheek pouch using a thermal light source,” Opt. Lett. 33(12), 1285–1287 (2008). [CrossRef] [PubMed]
  14. K. Dalziel and J. R. O’Brien, “Side reactions in the deoxygenation of dilute oxyhaemoglobin solutions by sodium dithionite,” Biochem. J. 67(1), 119–124 (1957). [PubMed]
  15. S. Prahl, “Optical Absorption of Hemoglobin ” (1999), http://omlc.ogi.edu/spectra/hemoglobin/ .
  16. D. J. Faber, E. G. Mik, M. C. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30(9), 1015–1017 (2005). [CrossRef] [PubMed]
  17. D. J. Faber and T. G. van Leeuwen, “Are quantitative attenuation measurements of blood by optical coherence tomography feasible?” Opt. Lett. 34(9), 1435–1437 (2009). [CrossRef] [PubMed]
  18. C. Xu, D. Marks, M. Do, and S. Boppart, “Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm,” Opt. Express 12(20), 4790–4803 (2004). [CrossRef] [PubMed]
  19. F. Robles and A. Wax, “Separating the scattering and absorption coefficients using the real and imaginary parts of the refractive index with low coherence interferometry,” Opt. Lett. (in review). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited