OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 1 — Aug. 2, 2010
  • pp: 97–105

Non-invasive surface-stripping for epifluorescence small animal imaging

Sophie Piper, Peyman Bahmani, Jan Klohs, Riad Bourayou, Peter Brunecker, Jochen Müller, Denise Harhausen, Ute Lindauer, Ulrich Dirnagl, Jens Steinbrink, and Andreas Wunder  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 1, pp. 97-105 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1418 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Non-invasive near-infrared fluorescence (NIRF) imaging is a powerful tool to study pathophysiology in a wide variety of animal disease models including brain diseases. However, especially in NIRF imaging of the brain or other deeper laying target sites, background fluorescence emitted from the scalp or superficial blood vessels can impede the detection of fluorescence in deeper tissue. Here, we introduce an effective method to reduce the impact of fluorescence from superficial layers. The approach uses excitation light at two different wavelengths generating two images with different depth sensitivities followed by an adapted subtraction algorithm. This technique leads to significant enhancement of the contrast and the detectability of fluorochromes located in deep tissue layers in tissue simulating phantoms and murine models with stroke.

© 2010 OSA

ToC Category:
Small Animal Imaging and Veterinary Studies

Original Manuscript: June 1, 2010
Revised Manuscript: June 24, 2010
Manuscript Accepted: July 2, 2010
Published: July 14, 2010

Virtual Issues
Bio-Optics in Clinical Application, Nanotechnology, and Drug Discovery (2010) Biomedical Optics Express

Sophie Piper, Peyman Bahmani, Jan Klohs, Riad Bourayou, Peter Brunecker, Jochen Müller, Denise Harhausen, Ute Lindauer, Ulrich Dirnagl, Jens Steinbrink, and Andreas Wunder, "Non-invasive surface-stripping for epifluorescence small animal imaging," Biomed. Opt. Express 1, 97-105 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B 98(1), 77–94 (2010). [CrossRef] [PubMed]
  2. V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006). [CrossRef] [PubMed]
  3. M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer 123(9), 1979–1990 (2008). [CrossRef] [PubMed]
  4. A. Wunder and J. Klohs, “Optical imaging of vascular pathophysiology,” Basic Res. Cardiol. 103(2), 182–190 (2008). [CrossRef] [PubMed]
  5. A. Wunder, R. H. Straub, S. Gay, J. Funk, and U. Müller-Ladner, “Molecular imaging: novel tools in visualizing rheumatoid arthritis,” Rheumatology (Oxford) 44(11), 1341–1349 (2005). [CrossRef] [PubMed]
  6. A. R. Hsu, L. C. Hou, A. Veeravagu, J. M. Greve, H. Vogel, V. Tse, and X. Chen, “In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model,” Mol. Imaging Biol. 8(6), 315–323 (2006). [CrossRef] [PubMed]
  7. C. M. McCann, P. Waterman, J. L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, “Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy,” Neuroimage 45(2), 360–369 (2009). [CrossRef] [PubMed]
  8. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002). [CrossRef] [PubMed]
  9. M. Hintersteiner, A. Enz, P. Frey, A. L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K. H. Wiederhold, and H. U. Gremlich, “In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe,” Nat. Biotechnol. 23(5), 577–583 (2005). [CrossRef] [PubMed]
  10. D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009). [CrossRef] [PubMed]
  11. J. Klohs, N. Baeva, J. Steinbrink, R. Bourayou, C. Boettcher, G. Royl, D. Megow, U. Dirnagl, J. Priller, and A. Wunder, “In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia,” J. Cereb. Blood Flow Metab. 29(7), 1284–1292 (2009). [CrossRef] [PubMed]
  12. J. Klohs, M. Gräfe, K. Graf, J. Steinbrink, T. Dietrich, D. Stibenz, P. Bahmani, G. Kronenberg, C. Harms, M. Endres, U. Lindauer, K. Greger, E. H. Stelzer, U. Dirnagl, and A. Wunder, “In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody,” Stroke 39(10), 2845–2852 (2008). [CrossRef] [PubMed]
  13. J. Klohs, J. Steinbrink, R. Bourayou, S. Mueller, R. Cordell, K. Licha, M. Schirner, U. Dirnagl, U. Lindauer, and A. Wunder, “Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice,” J. Neurosci. Methods 180(1), 126–132 (2009). [CrossRef] [PubMed]
  14. J. Klohs, J. Steinbrink, T. Nierhaus, R. Bourayou, U. Lindauer, P. Bahmani, U. Dirnagl, and A. Wunder, “Noninvasive near-infrared imaging of fluorochromes within the brain of live mice: an in vivo phantom study,” Mol. Imaging 5(3), 180–187 (2006). [PubMed]
  15. J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48(10), D299–D306 (2009). [CrossRef] [PubMed]
  16. E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007). [CrossRef] [PubMed]
  17. S. A. Prahl, (2001), http://omlc.ogi.edu/spectra/hemoglobin/index.html .
  18. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995). [CrossRef] [PubMed]
  19. L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997). [CrossRef] [PubMed]
  20. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999). [CrossRef] [PubMed]
  21. C. Meisel, K. Prass, J. Braun, I. Victorov, T. Wolf, D. Megow, E. Halle, H. D. Volk, U. Dirnagl, and A. Meisel, “Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke,” Stroke 35(1), 2–6 (2003). [CrossRef] [PubMed]
  22. E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, “Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography,” J. Biomed. Opt. 10(4), 044019 (2005). [CrossRef] [PubMed]
  23. R. Bourayou, H. Boeth, H. Benav, T. Betz, U. Lindauer, T. Nierhaus, J. Klohs, A. Wunder, U. Dirnagl, and J. Steinbrink, “Fluorescence tomography technique optimized for noninvasive imaging of the mouse brain,” J. Biomed. Opt. 13(4), 041311 (2008). [CrossRef] [PubMed]
  24. M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos, “Effects of background fluorescence in fluorescence molecular tomography,” Appl. Opt. 44(26), 5468–5474 (2005). [CrossRef] [PubMed]
  25. A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol. 54(15), 4687–4704 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 2 Fig. 3 Fig. 4
Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited