OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 2 — Sep. 1, 2010
  • pp: 378–384

Metallic nanoparticle on micro ring resonator for bio optical detection and sensing

Ali Haddadpour and Yasha Yi  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 2, pp. 378-384 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (916 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have numerically investigated the unique effects of metallic nanoparticle on the ring resonator, especially multiple Au nanoparticles on the micro ring resonator with the 4-port configuration on chip. For the Au nanoparticle, because it has smaller real refractive index than air and large absorption refractive index, we found that there is a blue shift for the ring resonance wavelength, instead of red shift normally observed for dielectric nanoparticles. The drop port intensity is strongly dependent on both number and size of nanoparticles, while relatively independent on position of nanoparticles. The correlation between the penetration depth of Au and the resonance mode evanescent tail is also discussed to reveal the unique properties of Au nanoparticle to be used for detection, sensing and nano medicine.

© 2010 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(230.0230) Optical devices : Optical devices

ToC Category:
Biomaterials, Biomimetics, and Biomechanics

Original Manuscript: May 28, 2010
Revised Manuscript: July 13, 2010
Manuscript Accepted: July 27, 2010
Published: August 2, 2010

Virtual Issues
Bio-Optics in Clinical Application, Nanotechnology, and Drug Discovery (2010) Biomedical Optics Express

Ali Haddadpour and Yasha Yi, "Metallic nanoparticle on micro ring resonator for bio optical detection and sensing," Biomed. Opt. Express 1, 378-384 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Francois and M. Himmelhaus, “Optical biosensor based on whispering gallery mode excitations in clusters of microparticles,” Appl. Phys. Lett. 92(14), 141107 (2008). [CrossRef]
  2. B. E. Little, S. T. Chu, and H. A. Haus, “Second-order filtering and sensing with partially coupled traveling waves in a single resonator,” Opt. Lett. 23(20), 1570 (1998). [CrossRef] [PubMed]
  3. M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical Modes in Photonic Molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998). [CrossRef]
  4. A. Forchel, M. Bayer, J. P. Reithmaier, T. L. Reinecke, and V. D. Kulakovskii, “Semiconductor Photonic Molecules,” Physica E 7(3-4), 616–624 (2000). [CrossRef]
  5. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  6. Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009). [CrossRef]
  7. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” Opt. Lett. 17, 1051 (2000).
  8. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science 295(5552), 102–105 (2002). [CrossRef] [PubMed]
  9. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998). [CrossRef] [PubMed]
  10. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004). [PubMed]
  11. R. Wiese, “Analysis of several fluorescent detector molecules for protein microarray use,” Luminescence 18(1), 25–30 (2003). [CrossRef] [PubMed]
  12. A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled Coupling of Counterpropagating Whispering-Gallery Modes by a Single Rayleigh Scatterer: A Classical Problem in a Quantum Optical Light,” Phys. Rev. Lett. 99(17), 173603 (2007). [CrossRef] [PubMed]
  13. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005). [CrossRef] [PubMed]
  14. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008). [CrossRef] [PubMed]
  15. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  16. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003). [CrossRef] [PubMed]
  17. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007). [CrossRef] [PubMed]
  18. M. Loncar, “Molecular sensors: Cavities lead the way,” Nat. Photonics 1(10), 565–567 (2007). [CrossRef]
  19. D. Evanko, “Incredible shrinking optics,” Nat. Methods 4(9), 683 (2007). [CrossRef]
  20. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008). [CrossRef] [PubMed]
  21. S. A. Wise, and R. A. Watters, “Bovine serum albumin (7% Solution) (SRM 927d),” NIST Gaithersburg, MD (2006).
  22. W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74(8), 3597–3619 (2003). [CrossRef]
  23. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004). [CrossRef] [PubMed]
  24. A. Polman and H. A. Atwater, “Plasmonics: optics at the nanoscale,” Mater. Today 8(1), 56 (2005). [CrossRef]
  25. B. Koch, Y. Yi, J. Zhang, S. Znameroski, and T. Smith, “Reflection-mode sensing using optical microresonators,” Appl. Phys. Lett. 95(20), 201111 (2009). [CrossRef]
  26. B. Koch, L. Carson, C. Guo, C. Lee, Y. Yi, J. Zhang, M. Zin, S. Znameroski, and T. Smith, “Hurricane: A simplified optical resonator for optical-power-based sensing with nano-particle taggants,” Sens. Actuators B Chem. 147(2), 573–580 (2010). [CrossRef]
  27. E. D. Palik, in Handboof of Optical Constants of Solids, edited by E. D. Palik (Academic, Orlando, FL, 1985)
  28. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method, Artech House, Inc. (2005)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited