OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 2 — Sep. 1, 2010
  • pp: 414–424

Quantitative phase study of the dynamic cellular response in femtosecond laser photoporation

Maciej Antkowiak, Maria Leilani Torres-Mapa, Kishan Dholakia, and Frank J. Gunn-Moore  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 2, pp. 414-424 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1535 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use Digital Holographic Microscopy to study dynamic responses of live cells to femtosecond laser cellular membrane photoporation. Temporal and spatial characteristics of morphological changes as well as dry mass variation are analyzed and compared with conventional fluorescent assays for viability and photoporation efficiency. With the latter, the results provide a new insight into the efficiency and toxicity of this novel optical method of drug delivery. In addition, quantitative phase maps reveal photoporation related sub-cellular dynamics of cytoplasmic vesicles.

© 2010 OSA

OCIS Codes
(090.1760) Holography : Computer holography
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1530) Medical optics and biotechnology : Cell analysis

ToC Category:
Cell Studies

Original Manuscript: June 1, 2010
Revised Manuscript: July 15, 2010
Manuscript Accepted: July 23, 2010
Published: August 2, 2010

Virtual Issues
Optical Imaging and Spectroscopy (2010) Biomedical Optics Express

Maciej Antkowiak, Maria Leilani Torres-Mapa, Kishan Dholakia, and Frank J. Gunn-Moore, "Quantitative phase study of the dynamic cellular response in femtosecond laser photoporation," Biomed. Opt. Express 1, 414-424 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Stevenson, F. J. Gunn-Moore, P. Campbell, and K. Dholakia, “Single cell optical transfection,” J. R. Soc. Interface 7(47), 863–871 (2010). [CrossRef] [PubMed]
  2. C. T. A. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophotonics 1(3), 183–199 (2008). [CrossRef] [PubMed]
  3. C. McDougall, D. J. Stevenson, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Targeted optical injection of gold nanoparticles into single mammalian cells,” J Biophotonics 2(12), 736–743 (2009). [CrossRef] [PubMed]
  4. U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002). [CrossRef] [PubMed]
  5. M. L. Torres-Mapa, L. Angus, M. Ploschner, K. Dholakia, and F. J. Gunn-Moore, “Transient transfection of mammalian cells using a violet diode laser,” J. Biomed. Opt. 15(4), 041506 (2010). [CrossRef]
  6. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005). [CrossRef]
  7. V. Kohli, V. Robles, M. L. Cancela, J. P. Acker, A. J. Waskiewicz, and A. Y. Elezzabi, “An alternative method for delivering exogenous material into developing zebrafish embryos,” Biotechnol. Bioeng. 98(6), 1230–1241 (2007). [CrossRef] [PubMed]
  8. A. Uchugonova, K. König, R. Bueckle, A. Isemann, and G. Tempea, “Targeted transfection of stem cells with sub-20 femtosecond laser pulses,” Opt. Express 16(13), 9357–9364 (2008). [CrossRef] [PubMed]
  9. P. Mthunzi, K. Dholakia, and F. Gunn-Moore, “Photo-transfection of mammalian cells using femtosecond laser pulses: optimisation and applicability to stem cell differentiation,” J. Biomed. Opt. 15(4), 041507 (2010). [CrossRef]
  10. L. E. Barrett, J. Y. Sul, H. Takano, E. J. Van Bockstaele, P. G. Haydon, and J. H. Eberwine, “Region-directed phototransfection reveals the functional significance of a dendritically synthesized transcription factor,” Nat. Methods 3(6), 455–460 (2006). [CrossRef] [PubMed]
  11. J. Y. Sul, C. W. Wu, F. Zeng, J. Jochems, M. T. Lee, T. K. Kim, T. Peritz, P. Buckley, D. J. Cappelleri, M. Maronski, M. Kim, V. Kumar, D. Meaney, J. Kim, and J. Eberwine, “Transcriptome transfer produces a predictable cellular phenotype,” Proc. Natl. Acad. Sci. U.S.A. 106(18), 7624–7629 (2009). [CrossRef] [PubMed]
  12. J. Baumgart, W. Bintig, A. Ngezahayo, S. Willenbrock, H. Murua Escobar, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, “Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53 a cells,” Opt. Express 16(5), 3021–3031 (2008). [CrossRef] [PubMed]
  13. J. Baumgart, K. Kuetemeyer, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, “Repetition rate dependency of reactive oxygen species formation during femtosecond laser-based cell surgery,” J. Biomed. Opt. 14(5), 054040 (2009). [CrossRef] [PubMed]
  14. M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Utilising dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J. Biophoton. in press).
  15. D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300(5616), 82–86 (2003). [CrossRef] [PubMed]
  16. M. Kemmler, M. Fratz, D. Giel, N. Saum, A. Brandenburg, and C. Hoffmann, “Noninvasive time-dependent cytometry monitoring by digital holography,” J. Biomed. Opt. 12(6), 064002 (2007). [CrossRef] [PubMed]
  17. N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34(6), 767–769 (2009). [CrossRef] [PubMed]
  18. G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008). [CrossRef] [PubMed]
  19. C. J. Mann, L. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5(1), 21 (2006). [CrossRef] [PubMed]
  20. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005). [CrossRef] [PubMed]
  21. N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, “Quantitative phase microscopy of articular chondrocyte dynamics by wide-field digital interferometry,” J. Biomed. Opt. 15(1), 010505 (2010). [CrossRef] [PubMed]
  22. B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009). [CrossRef] [PubMed]
  23. Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010). [CrossRef] [PubMed]
  24. G. Popescu, Y. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008). [CrossRef] [PubMed]
  25. L. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Opt. Express 17(14), 12031–12038 (2009). [CrossRef] [PubMed]
  26. L. Yu, S. Mohanty, G. Liu, S. Genc, Z. Chen, and M. W. Berns, “Quantitative phase evaluation of dynamic changes on cell membrane during laser microsurgery,” J. Biomed. Opt. 13(5), 050508 (2008). [CrossRef] [PubMed]
  27. P. A. Quinto-Su and V. Venugopalan, “Mechanisms of laser cellular microsurgery,” Methods Cell Biol. 82, 113–151 (2007). [PubMed]
  28. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999). [CrossRef] [PubMed]
  29. T. Kreis, “Digital holographic interference-phase measurement using the Fourier-transform method,” J. Opt. Soc. Am. A 3(6), 847–855 (1986). [CrossRef]
  30. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003). [CrossRef] [PubMed]
  31. M. Takagi, T. Kitabayashi, S. Ito, M. Fujiwara, and A. Tokuda, “Noninvasive measurement of three-dimensional morphology of adhered animal cells employing phase-shifting laser microscope,” J. Biomed. Opt. 12(5), 054010 (2007). [PubMed]
  32. U. Schnars, and W. Jueptner, Digital holography: digital hologram recording, numerical reconstruction, and related techniques (Springer, Berlin, 2005), pp. ix, 164 p.
  33. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008). [CrossRef] [PubMed]
  34. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47(19), D176–D182 (2008). [CrossRef] [PubMed]
  35. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14(13), 5895–5908 (2006). [CrossRef] [PubMed]
  36. M. Antkowiak, N. Callens, C. Yourassowsky, and F. Dubois, “Extended focused imaging of a microparticle field with digital holographic microscopy,” Opt. Lett. 33(14), 1626–1628 (2008). [CrossRef] [PubMed]
  37. A. S. Verkman, “Solute and macromolecule diffusion in cellular aqueous compartments,” Trends Biochem. Sci. 27(1), 27–33 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (2342 KB)     
» Media 2: AVI (3610 KB)     
» Media 3: AVI (3704 KB)     
» Media 4: AVI (3807 KB)     
» Media 5: AVI (3982 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited