OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 2 — Sep. 1, 2010
  • pp: 453–462

Folate receptor targeting silica nanoparticle probe for two-photon fluorescence bioimaging

Xuhua Wang, Sheng Yao, Hyo-Yang Ahn, Yuanwei Zhang, Mykhailo V. Bondar, Joseph A. Torres, and Kevin D. Belfield  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 2, pp. 453-462 (2010)
http://dx.doi.org/10.1364/BOE.1.000453


View Full Text Article

Enhanced HTML    Acrobat PDF (3354 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Narrow dispersity organically modified silica nanoparticles (SiNPs), diameter ~30 nm, entrapping a hydrophobic two-photon absorbing fluorenyl dye, were synthesized by hydrolysis of triethoxyvinylsilane and (3-aminopropyl)triethoxysilane in the nonpolar core of Aerosol-OT micelles. The surface of the SiNPs were functionalized with folic acid, to specifically deliver the probe to folate receptor (FR) over-expressing Hela cells, making these folate two-photon dye-doped SiNPs potential candidates as probes for two-photon fluorescence microscopy (2PFM) bioimaging. In vitro studies using FR over-expressing Hela cells and low FR expressing MG63 cells demonstrated specific cellular uptake of the functionalized nanoparticles. One-photon fluorescence microscopy (1PFM) imaging, 2PFM imaging, and two-photon fluorescence lifetime microscopy (2P-FLIM) imaging of Hela cells incubated with folate-modified two-photon dye-doped SiNPs were demonstrated.

© 2010 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Nanotechnology and Plasmonics

History
Original Manuscript: June 15, 2010
Revised Manuscript: July 24, 2010
Manuscript Accepted: July 26, 2010
Published: August 2, 2010

Virtual Issues
Bio-Optics in Clinical Application, Nanotechnology, and Drug Discovery (2010) Biomedical Optics Express
September 10, 2010 Spotlight on Optics

Citation
Xuhua Wang, Sheng Yao, Hyo-Yang Ahn, Yuanwei Zhang, Mykhailo V. Bondar, Joseph A. Torres, and Kevin D. Belfield, "Folate receptor targeting silica nanoparticle probe for two-photon fluorescence bioimaging," Biomed. Opt. Express 1, 453-462 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-2-453


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Multiphoton microscopy in biological research,” Curr. Opin. Chem. Biol. 5(5), 603–608 (2001). [CrossRef] [PubMed]
  3. V. E. Centonze and J. G. White, “Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging,” Biophys. J. 75(4), 2015–2024 (1998). [CrossRef] [PubMed]
  4. J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999). [CrossRef] [PubMed]
  5. A. R. Morales, K. J. Schafer-Hales, A. I. Marcus, and K. D. Belfield, “Amine-reactive fluorene probes: synthesis, optical characterization, bioconjugation, and two-photon fluorescence imaging,” Bioconjug. Chem. 19(12), 2559–2567 (2008). [CrossRef] [PubMed]
  6. C. D. Andrade, C. O. Yanez, L. Rodriguez, and K. D. Belfield, “A series of fluorene-based two-photon absorbing molecules: synthesis, linear and nonlinear characterization, and bioimaging,” J. Org. Chem. 75(12), 3975–3982 (2010). [CrossRef] [PubMed]
  7. A. R. Morales, C. O. Yanez, K. J. Schafer-Hales, A. I. Marcus, and K. D. Belfield, “Biomolecule labeling and imaging with a new fluorenyl Two-photon fluorescent probe,” Bioconjug. Chem. 20(10), 1992–2000 (2009). [CrossRef] [PubMed]
  8. M. Ferrari, “Cancer nanotechnology: opportunities and challenges,” Nat. Rev. Cancer 5(3), 161–171 (2005). [CrossRef] [PubMed]
  9. E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Targeting of drugs and nanoparticles to tumors,” J. Cell Biol. 188(6), 759–768 (2010). [CrossRef] [PubMed]
  10. T. Y. Ohulchanskyy, I. Roy, K. T. Yong, H. E. Pudavar, and P. N. Prasad, “High-resolution light microscopy using luminescent nanoparticles,” Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(2), 162–175 (2010). [PubMed]
  11. D. J. Bharali, I. Klejbor, E. K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E. J. Bergey, P. N. Prasad, and M. K. Stachowiak, “Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain,” Proc. Natl. Acad. Sci. U.S.A. 102(32), 11539–11544 (2005). [CrossRef] [PubMed]
  12. T. Y. Ohulchanskyy, I. Roy, L. N. Goswami, Y. H. Chen, E. J. Bergey, R. K. Pandey, A. R. Oseroff, and P. N. Prasad, “Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer,” Nano Lett. 7(9), 2835–2842 (2007). [CrossRef] [PubMed]
  13. S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, “Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy,” J. Am. Chem. Soc. 129(9), 2669–2675 (2007). [CrossRef] [PubMed]
  14. J. Qian, X. Li, M. Wei, X. Gao, Z. Xu, and S. He, “Bio-molecule-conjugated fluorescent organically modified silica nanoparticles as optical probes for cancer cell imaging,” Opt. Express 16(24), 19568–19578 (2008). [CrossRef] [PubMed]
  15. R. Kumar, I. Roy, T. Y. Ohulchanskyy, L. N. Goswami, A. C. Bonoiu, E. J. Bergey, K. M. Tramposch, A. Maitra, and P. N. Prasad, “Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging,” ACS Nano 2(3), 449–456 (2008). [CrossRef] [PubMed]
  16. I. Brigger, C. Dubernet, and P. Couvreur, “Nanoparticles in cancer therapy and diagnosis,” Adv. Drug Deliv. Rev. 54(5), 631–651 (2002). [CrossRef] [PubMed]
  17. A. C. Antony, “Folate receptors,” Annu. Rev. Nutr. 16(1), 501–521 (1996). [CrossRef] [PubMed]
  18. C. P. Leamon and J. A. Reddy, “Folate-targeted chemotherapy,” Adv. Drug Deliv. Rev. 56(8), 1127–1141 (2004). [CrossRef] [PubMed]
  19. Y. Lu and P. S. Low, “Folate-mediated delivery of macromolecular anticancer therapeutic agents,” Adv. Drug Deliv. Rev. 54(5), 675–693 (2002). [CrossRef] [PubMed]
  20. C. Sun, R. Sze, and M. Zhang, “Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI,” J. Biomed. Mater. Res. A 78(3), 550–557 (2006). [CrossRef] [PubMed]
  21. J. H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Biodegradable luminescent porous silicon nanoparticles for in vivo applications,” Nat. Mater. 8(4), 331–336 (2009). [CrossRef] [PubMed]
  22. S. Yao, H. Y. Ahn, X. Wang, J. Fu, E. W. Van Stryland, D. J. Hagan, and K. D. Belfield, “Donor-acceptor-donor fluorene derivatives for two-photon fluorescence lysosomal imaging,” J. Org. Chem. 75(12), 3965–3974 (2010). [CrossRef] [PubMed]
  23. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, (Kluwer Academic / Plenum Publisher, New York, Second Edition, 52–53, 1999).
  24. C. C. Corredor, K. D. Belfield, M. V. Bondar, O. V. Przhonska, and S. Yao, “One- and two-photon photochemical stability of linear and branched fluorene derivatives,” J. Photochem. Photobiol. Chem. 184(1-2), 105–112 (2006). [CrossRef]
  25. K. D. Belfield, M. V. Bondar, C. O. Yanez, F. E. Hernandez, and O. V. Przhonska, “One- and two-photon stimulated emission depletion of a sulfonyl-containing fluorene derivative,” J. Phys. Chem. B 113(20), 7101–7106 (2009). [CrossRef] [PubMed]
  26. H. Shi, X. He, Y. Yuan, K. Wang, and D. Liu, “Nanoparticle-based biocompatible and long-life marker for lysosome labeling and tracking,” Anal. Chem. 82(6), 2213–2220 (2010). [CrossRef] [PubMed]
  27. E. I. Sega and P. S. Low, “Tumor detection using folate receptor-targeted imaging agents,” Cancer Metastasis Rev. 27(4), 655–664 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited