OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 2 — Sep. 1, 2010
  • pp: 482–488

Linear diode laser bar optical stretchers for cell deformation

Ihab Sraj, David W.M. Marr, and Charles D. Eggleton  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 2, pp. 482-488 (2010)
http://dx.doi.org/10.1364/BOE.1.000482


View Full Text Article

Enhanced HTML    Acrobat PDF (1960 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To investigate the use of linear diode laser bars to optically stretch cells and measure their mechanical properties, we present numerical simulations using the immersed boundary method (IBM) coupled with classic ray optics. Cells are considered as three-dimensional (3D) spherical elastic capsules immersed in a fluid subjected to both optical and hydrodynamic forces in a periodic domain. We simulate cell deformation induced by both single and dual diode laser bar configurations and show that a single diode laser bar induces significant stretching but also induces cell translation of speed < 10 µm/sec for applied 6.6 mW/µm power in unconfined systems. The dual diode laser bar configuration, however, can be used to both stretch and optically trap cells at a fixed position. The net cell deformation was found to be a function of the total laser power and not the power distribution between single or dual diode laser bar configurations.

© 2010 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(140.2020) Lasers and laser optics : Diode lasers
(140.7010) Lasers and laser optics : Laser trapping
(170.1530) Medical optics and biotechnology : Cell analysis

ToC Category:
Optical Traps, Manipulation, and Tracking

History
Original Manuscript: June 1, 2010
Revised Manuscript: July 31, 2010
Manuscript Accepted: August 2, 2010
Published: August 5, 2010

Virtual Issues
Bio-Optics in Clinical Application, Nanotechnology, and Drug Discovery (2010) Biomedical Optics Express

Citation
Ihab Sraj, David W. M. Marr, and Charles D. Eggleton, "Linear diode laser bar optical stretchers for cell deformation," Biomed. Opt. Express 1, 482-488 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-2-482


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987). [CrossRef] [PubMed]
  3. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005). [CrossRef] [PubMed]
  4. G. Bao and S. Suresh, “Cell and molecular mechanics of biological materials,” Nat. Mater. 2(11), 715–725 (2003). [CrossRef] [PubMed]
  5. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001). [CrossRef] [PubMed]
  6. M. Gu, S. Kuriakose, and X. Gan, “A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes,” Opt. Express 15(3), 1369–1375 (2007). [CrossRef] [PubMed]
  7. S. K. Mohanty, A. Uppal, and P. K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett. 26(12), 971–974 (2004). [CrossRef] [PubMed]
  8. R. R. Huruta, M. L. Barjas-Castro, S. T. O. Saad, F. F. Costa, A. Fontes, L. C. Barbosa, and C. L. Cesar, “Mechanical properties of stored red blood cells using optical tweezers,” Blood 92(8), 2975–2977 (1998). [PubMed]
  9. S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999). [CrossRef] [PubMed]
  10. P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69(5), 1666–1673 (1995). [CrossRef] [PubMed]
  11. P. B. Bareil, Y. Sheng, Y. Q. Chen, and A. Chiou, “Calculation of spherical red blood cell deformation in a dual-beam optical stretcher,” Opt. Express 15(24), 16029–16034 (2007). [CrossRef] [PubMed]
  12. G. B. Liao, P. B. Bareil, Y. Sheng, and A. Chiou, “One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells,” Opt. Express 16(3), 1996–2004 (2008). [CrossRef] [PubMed]
  13. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Fiber-focused diode bar optical trapping for microfluidic flow manipulation,” Appl. Phys. Lett. 92(1), 013904 (2008). [CrossRef]
  14. I. Sraj, J. Chichester, E. Hoover, R. Jimenez, J. Squier, C. D. Eggleton, and D. W. M. Marr, “Cell deformation cytometry using diode-bar optical stretchers,” J. Biomed. Opt. 15, (2010), in press.
  15. C. Peskin and D. McQueen, “A three dimensional computational method for blood flow in the heart I. immersed elastic fibers in a viscous incompressible fluid,” J. Comput. Phys. 81(2), 372–405 (1989). [CrossRef]
  16. C. D. Eggleton and A. S. Popel, “A large deformation of red blood cell ghosts in a simple shear flow,” Phys. Fluids 10(8), 1834–1845 (1998). [CrossRef]
  17. P. Pawar, S. Jadhav, C. D. Eggleton, and K. Konstantopoulos, “Roles of cell and microvillus deformation and receptor-ligand binding kinetics in cell rolling,” Am. J. Physiol. Heart Circ. Physiol. 295(4), 1439–1450 (2008). [CrossRef]
  18. C. Peskin, “Numerical analysis of blood flow in the heart,” J. Comput. Phys. 25(3), 220–252 (1977). [CrossRef]
  19. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992). [CrossRef] [PubMed]
  20. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000). [CrossRef] [PubMed]
  21. P. B. Bareil, Y. Sheng, and A. Chiou, “Local stress distribution on the surface of a spherical cell in an optical stretcher,” Opt. Express 14(25), 12503–12509 (2006). [CrossRef] [PubMed]
  22. H. C. Van de Hulst, “Light scattering by small particles,” John Wiley and Sons, New York. 172–176 (1957).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited