OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 2 — Sep. 1, 2010
  • pp: 553–565

Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring

S. A. Carp, G. P. Dai, D. A. Boas, M. A. Franceschini, and Y. R. Kim  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 2, pp. 553-565 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1461 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cerebral blood flow (CBF) during stepped hypercapnia was measured simultaneously in the rat brain using near-infrared diffuse correlation spectroscopy (DCS) and arterial spin labeling MRI (ASL). DCS and ASL CBF values agree very well, with high correlation (R=0.86, p< 10-9), even when physiological instability perturbed the vascular response. A partial volume effect was evident in the smaller magnitude of the optical CBF response compared to the MRI values (averaged over the cortical area), primarily due to the inclusion of white matter in the optically sampled volume. The 8.2 and 11.7 mm mid-separation channels of the multi-distance optical probe had the lowest partial volume impact, reflecting ~75 % of the MR signal change. Using a multiplicative correction factor, the ASL CBF could be predicted with no more than 10% relative error, affording an opportunity for real-time relative cerebral metabolism monitoring in conjunction with MR measurement of cerebral blood volume using super paramagnetic contrast agents.

© 2010 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Neuroscience and Brain Imaging

Original Manuscript: June 1, 2010
Revised Manuscript: July 13, 2010
Manuscript Accepted: July 13, 2010
Published: August 10, 2010

Virtual Issues
Optical Imaging and Spectroscopy (2010) Biomedical Optics Express

S. A. Carp, G. P. Dai, D. A. Boas, M. A. Franceschini, and Y. R. Kim, "Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring," Biomed. Opt. Express 1, 553-565 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. R. Gordon, H. B. Choi, R. L. Rungta, G. C. Ellis-Davies, and B. A. MacVicar, “Brain metabolism dictates the polarity of astrocyte control over arterioles,” Nature 456, 745–749 (2008).
  2. N. J. Maandag, D. Coman, B. G. Sanganahalli, P. Herman, A. J. Smith, H. Blumenfeld, R. G. Shulman, and F. Hyder, “Energetics of neuronal signaling and fMRI activity,” Proc. Natl. Acad. Sci. U.S.A. 104, 20546–20551 (2007).
  3. I. Maurer, S. Zierz, and H. J. Moller, “Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia,” Schizophr. Res. 48, 125–136 (2001).
  4. I. Maurer, S. Zierz, and H. J. Moller, “A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients,” Neurobiol. Aging 21, 455–462 (2000).
  5. M. Wong-Riley, P. Antuono, K. C. Ho, R. Egan, R. Hevner, W. Liebl, Z. Huang, R. Rachel, and J. Jones, “Cytochrome oxidase in alzheimer’s disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems,” Vision Res. 37, 3593–3608 (1997).
  6. M. F. Beal, “Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?” Ann. Neurol. 31, 119–130 (1992).
  7. A. M. Rudolph and M. A. Heymann, “The circulation of the fetus in utero. methods for studying distribution of blood flow, cardiac output and organ blood flow,” Circ. Res. 21, 163–184 (1967).
  8. G. De Visscher, M. Haseldonckx, W. Flameng, M. Borgers, R. S. Reneman, and K. van Rossem, “Development of a novel fluorescent microsphere technique to combine serial cerebral blood flow measurements with histology in the rat,” J. Neurosci. Methods. 122, 149–156 (2003).
  9. K. M. Powers, C. Schimmel, R. W. Glenny, and C. M. Bernards, “Cerebral blood flow determinations using fluorescent microspheres: variations on the sedimentation method validated,” J. Neurosci. Methods. 87, 159–165 (1999).
  10. A. Humeau, W. Steenbergen, H. Nilsson, and T. Stromberg, “Laser doppler perfusion monitoring and imaging: novel approaches,” Med. Biol. Eng. Comput. 45, 421–435 (2007).
  11. V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers Med. Sci. 24, 269–283 (2009).
  12. V. L. Babikian, E. Feldmann, L. R. Wechsler, D. W. Newell, C. R. Gomez, U. Bogdahn, L. R. Caplan, M. P. Spencer, C. Tegeler, E. B. Ringelstein, and A. V. Alexandrov, “Transcranial doppler ultrasonography: year 2000 update,” J. Neuroimaging 10, 101–115 (2000).
  13. J. A. Detre, J. S. Leigh, D. S. Williams, and A. P. Koretsky, “Perfusion imaging,” Magn. Reson. Med. 23, 37–45 (1992).
  14. T. T. Liu and G. G. Brown, “Measurement of cerebral perfusion with arterial spin labeling: Part 1. methods,” J. Int. Neuropsychol. Soc. 13, 517–525 (2007).
  15. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
  16. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192–215 (1997).
  17. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
  18. J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 44002 (2005).
  19. C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46, 2053–2065 (2001).
  20. J. P. Culver, T. Durduran, T. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).
  21. C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14, 034015 (2009).
  22. M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).
  23. N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31, 341–352 (2010).
  24. E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial doppler ultrasound,” Opt. Express 17, 12571–12581 (2009).
  25. T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29, 1766–1768 (2004).
  26. T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
  27. G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion mri,” Opt. Express 15, 1064–1075 (2007).
  28. S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
  29. M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).
  30. G. Paxinos and C. Watson, The rat brain in stereotaxic coordinates (Academic Press, San Diego, 1998).
  31. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18, 865–879 (2003).
  32. T. Reich and H. Rusinek, “Cerebral cortical and white matter reactivity to carbon dioxide,” Stroke 20, 453–457 (1989).
  33. M. Sato, G. Pawlik, and W. D. Heiss, “Comparative studies of regional cns blood flow autoregulation and responses to co2 in the cat. effects of altering arterial blood pressure and paco2 on rcbf of cerebrum, cerebellum, and spinal cord,” Stroke 15, 91–97 (1984).
  34. M. Reivich, “Arterial pco2 and cerebral hemodynamics,” Am. J. Physiol. 206, 25–35 (1964).
  35. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional monte carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–170 (2002).
  36. D. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media : theory and biomedical applications,” Ph.D. thesis, Univ. of Pennsylvania (1996).
  37. C. Zhou, “In vivo optical imaging and spectroscopy of cerebral hemodynamics,” Ph.D. thesis, Univ. of Pennsylvania (2007).
  38. J. P. Culver, T. Durduran, C. Cheung, D. Furuya, J. H. Greenberg, and A. G. Yodh, “Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest,” Adv. Exp. Med. Biol. 510, 293–297 (2003).
  39. J. Lu, G. Dai, Y. Egi, S. Huang, S. J. Kwon, E. H. Lo, and Y. R. Kim, “Characterization of cerebrovascular responses to hyperoxia and hypercapnia using mri in rat,” Neuroimage 45, 1126–1134 (2009).
  40. M. Fabricius and M. Lauritzen, “Examination of the role of nitric oxide for the hypercapnic rise of cerebral blood flow in rats,” Am. J. Physiol. 266, 1457–2464 (1994).
  41. M. Fabricius, I. Rubin, M. Bundgaard, and M. Lauritzen, “Nos activity in brain and endothelium: relation to hypercapnic rise of cerebral blood flow in rats,” Am. J. Physiol. 271, 2035–2044 (1996).
  42. S. Wegener, W. C. Wu, J. E. Perthen, and E. C. Wong, “Quantification of rodent cerebral blood flow (CBF) in normal and high flow states using pulsed arterial spin labeling magnetic resonance imaging,” J. Magn. Reson. Imaging 26, 855–862 (2007).
  43. J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13, 975–987 (2001).
  44. R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke 5, 630–639 (1974).
  45. R. B. Buxton, E. C. Wong, and L. R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med. 39, 855–864 (1998).
  46. Y. Kong, Y. Zheng, D. Johnston, J. Martindale, M. Jones, S. Billings, and J. Mayhew, “A model of the dynamic relationship between blood flow and volume changes during brain activation,” J. Cereb. Blood Flow Metab. 24, 1382–1392 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited