OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 2 — Sep. 1, 2010
  • pp: 566–573

An automatic image processing algorithm for initiating and terminating intracoronary OFDI pullback

Lida P. Hariri, Brett E. Bouma, Sergio Waxman, Milen Shishkov, Benjamin J. Vakoc, Melissa J. Suter, Mark I. Freilich, Wang-Yul Oh, Mireille Rosenberg, and Guillermo J. Tearney  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 2, pp. 566-573 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1641 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Intracoronary optical frequency domain imaging (OFDI) provides high resolution, three-dimensional views of coronary artery microstructure, but requires a non-occlusive saline/contrast purge to displace blood for clear artery views. Recent studies utilized manual pullback initiation/termination based on real-time image observation. Automated pullback initiation/termination by real-time OFDI signal analysis would enable more efficient data acquisition. We evaluate the use of simple imaging parameters to automatically and robustly differentiate between diagnostic-quality clear artery wall (CAW) versus blood-obstructed fields (BOF). Algorithms are tested using intracoronary OCT human data retrospectively and intracoronary OFDI swine and human data prospectively. In prospective analysis of OFDI swine data, the sensitivity and specificity of the ratio of second and first moments (contrast parameter) were 99.6% and 97.2%, respectively. In prospective analysis of OFDI clinical data, the contrast parameter yielded 96.0% sensitivity and 94.5% specificity. Accuracy improved further by analyzing sequential frames. These results indicate the algorithm may be utilized with intracoronary OFDI for initiating and terminating automated pullback and digital data recording.

© 2010 OSA

OCIS Codes
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(100.0100) Image processing : Image processing
(100.2960) Image processing : Image analysis
(110.0110) Imaging systems : Imaging systems
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Cardiovascular Applications

Original Manuscript: July 8, 2010
Revised Manuscript: July 28, 2010
Manuscript Accepted: August 8, 2010
Published: August 10, 2010

Lida P. Hariri, Brett E. Bouma, Sergio Waxman, Milen Shishkov, Benjamin J. Vakoc, Melissa J. Suter, Mark I. Freilich, Wang-Yul Oh, Mireille Rosenberg, and Guillermo J. Tearney, "An automatic image processing algorithm for initiating and terminating intracoronary OFDI pullback," Biomed. Opt. Express 1, 566-573 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation 111(12), 1551–1555 (2005). [CrossRef] [PubMed]
  2. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12(12), 1429–1433 (2007). [CrossRef] [PubMed]
  3. M. Kawasaki, B. E. Bouma, J. Bressner, S. L. Houser, S. K. Nadkarni, B. D. MacNeill, I. K. Jang, H. Fujiwara, and G. J. Tearney, “Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques,” J. Am. Coll. Cardiol. 48(1), 81–88 (2006). [CrossRef] [PubMed]
  4. G. J. Tearney, I. K. Jang, and B. E. Bouma, “Optical coherence tomography for imaging the vulnerable plaque,” J. Biomed. Opt. 11(2), 021002 (2006). [CrossRef] [PubMed]
  5. D. Stamper, N. J. Weissman, and M. Brezinski, “Plaque characterization with optical coherence tomography,” J. Am. Coll. Cardiol. 47(8Suppl), C69–C79 (2006). [CrossRef] [PubMed]
  6. M. E. Brezinski, “Optical coherence tomography for identifying unstable coronary plaque,” Int. J. Cardiol. 107(2), 154–165 (2006). [CrossRef] [PubMed]
  7. T. Kubo, T. Imanishi, S. Takarada, A. Kuroi, S. Ueno, T. Yamano, T. Tanimoto, Y. Matsuo, T. Masho, H. Kitabata, K. Tsuda, Y. Tomobuchi, and T. Akasaka, “Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy,” J. Am. Coll. Cardiol. 50(10), 933–939 (2007). [CrossRef] [PubMed]
  8. S. Chia, O. Christopher Raffel, M. Takano, G. J. Tearney, B. E. Bouma, and I. K. Jang, “In-vivo comparison of coronary plaque characteristics using optical coherence tomography in women vs. men with acute coronary syndrome,” Coron. Artery Dis. 18(6), 423–427 (2007). [CrossRef] [PubMed]
  9. M. E. Brezinski, “Applications of optical coherence tomography to cardiac and musculoskeletal diseases: bench to bedside?” J. Biomed. Opt. 12(5), 051705 (2007). [CrossRef] [PubMed]
  10. M. Takano, I. K. Jang, S. Inami, M. Yamamoto, D. Murakami, K. Okamatsu, K. Seimiya, T. Ohba, and K. Mizuno, “In vivo comparison of optical coherence tomography and angioscopy for the evaluation of coronary plaque characteristics,” Am. J. Cardiol. 101(4), 471–476 (2008). [CrossRef] [PubMed]
  11. G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging 1(6), 752–761 (2008). [CrossRef] [PubMed]
  12. G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15(1), 011105 (2010). [CrossRef] [PubMed]
  13. P. Barlis, N. Gonzalo, C. Di Mario, F. Prati, L. Buellesfeld, J. Rieber, M. C. Dalby, G. Ferrante, M. Cera, E. Grube, P. W. Serruys, and E. Regar, “A multicentre evaluation of the safety of intracoronary optical coherence tomography,” EuroIntervention 5(1), 90–95 (2009). [PubMed]
  14. P. Barlis and J. M. Schmitt, “Current and future developments in intracoronary optical coherence tomography imaging,” EuroIntervention 4(4), 529–533 (2009). [PubMed]
  15. A. F. Low, Y. Kawase, Y. H. Chan, G. J. Tearney, B. E. Bouma, and I. K. Jang, “In vivo characterisation of coronary plaques with conventional grey-scale intravascular ultrasound: correlation with optical coherence tomography,” EuroIntervention 4(5), 626–632 (2009). [PubMed]
  16. P. Barlis, G. van Soest, P. W. Serruys, and E. Regar, “Intracoronary optical coherence tomography and the evaluation of stents,” Expert Rev. Med. Devices 6(2), 157–167 (2009). [CrossRef] [PubMed]
  17. F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I. K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, and P. W. Serruys, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31(4), 401–415 (2010). [CrossRef] [PubMed]
  18. B. D. MacNeill, H. C. Lowe, M. Takano, V. Fuster, and I. K. Jang, “Intravascular modalities for detection of vulnerable plaque: current status,” Arterioscler. Thromb. Vasc. Biol. 23(8), 1333–1342 (2003). [CrossRef] [PubMed]
  19. B. D. MacNeill, B. E. Bouma, H. Yabushita, I. K. Jang, and G. J. Tearney, “Intravascular optical coherence tomography: cellular imaging,” J. Nucl. Cardiol. 12(4), 460–465 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited