OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 2 — Sep. 1, 2010
  • pp: 574–586

Instrumentation to rapidly acquire fluorescence wavelength-time matrices of biological tissues

William R. Lloyd, Robert H. Wilson, Ching-Wei Chang, Gregory D. Gillispie, and Mary-Ann Mycek  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 2, pp. 574-586 (2010)
http://dx.doi.org/10.1364/BOE.1.000574


View Full Text Article

Enhanced HTML    Acrobat PDF (1337 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fiber-optic system was developed to rapidly acquire tissue fluorescence wavelength-time matrices (WTMs) with high signal-to-noise ratio (SNR). The essential system components (473 nm microchip laser operating at 3 kHz repetition frequency, fiber-probe assemblies, emission monochromator, photomultiplier tube, and digitizer) were assembled into a compact and clinically-compatible unit. Data were acquired from fluorescence standards and tissue-simulating phantoms to test system performance. Fluorescence decay waveforms with SNR > 100 at the decay curve peak were obtained in less than 30 ms. With optimized data transfer and monochromator stepping functions, it should be feasible to acquire a full WTM at 5 nm emission wavelength intervals over a 200 nm range in under 2 seconds.

© 2010 OSA

OCIS Codes
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Spectroscopic Diagnostics

History
Original Manuscript: June 16, 2010
Revised Manuscript: August 6, 2010
Manuscript Accepted: August 7, 2010
Published: August 10, 2010

Virtual Issues
Optical Imaging and Spectroscopy (2010) Biomedical Optics Express

Citation
William R. Lloyd, Robert H. Wilson, Ching-Wei Chang, Gregory D. Gillispie, and Mary-Ann Mycek, "Instrumentation to rapidly acquire fluorescence wavelength-time matrices of biological tissues," Biomed. Opt. Express 1, 574-586 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-2-574


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Mycek, and B. W. Pogue, eds., Handbook of Biomedical Fluorescence (Marcel-Dekker Inc., New York, New York, 2003).
  2. J. D. Pitts and M.-A. Mycek, “Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution,” Rev. Sci. Instrum. 72(7), 3061–3072 (2001). [CrossRef]
  3. Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75(1), 151–162 (2004). [CrossRef]
  4. M. Chandra, K. Vishwanath, G. D. Fichter, E. Liao, S. J. Hollister, and M.-A. Mycek, “Quantitative molecular sensing in biological tissues: an approach to non-invasive optical characterization,” Opt. Express 14(13), 6157–6171 (2006). [CrossRef] [PubMed]
  5. Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13(2), 024012 (2008). [CrossRef] [PubMed]
  6. S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt. 11(2), 024008 (2006). [CrossRef] [PubMed]
  7. I. Georgakoudi and M. S. Feld, “The combined use of fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in Barrett’s esophagus,” Gastrointest. Endosc. Clin. N. Am. 14(3), 519–537, ix (2004). [CrossRef] [PubMed]
  8. T. J. Pfefer, D. Y. Paithankar, J. M. Poneros, K. T. Schomacker, and N. S. Nishioka, “Temporally and spectrally resolved fluorescence spectroscopy for the detection of high grade dysplasia in Barrett’s esophagus,” Lasers Surg. Med. 32(1), 10–16 (2003). [CrossRef] [PubMed]
  9. Y. S. Fawzy and H. Zeng, “Intrinsic fluorescence spectroscopy for endoscopic detection and localization of the endobronchial cancerous lesions,” J. Biomed. Opt. 13(6), 064022 (2008). [CrossRef] [PubMed]
  10. M. Chandra, J. Scheiman, D. Heidt, D. Simeone, B. McKenna, and M.-A. Mycek, “Probing pancreatic disease using tissue optical spectroscopy,” J. Biomed. Opt. 12(6), 060501 (2007). [CrossRef] [PubMed]
  11. R. H. Wilson, M. Chandra, J. Scheiman, D. Simeone, B. McKenna, J. Purdy, and M. A. Mycek, “Optical spectroscopy detects histological hallmarks of pancreatic cancer,” Opt. Express 17(20), 17502–17516 (2009). [CrossRef] [PubMed]
  12. M. Chandra, J. Scheiman, D. Simeone, B. McKenna, J. Purdy, and M.-A. Mycek, “Spectral areas and ratios classifier algorithm for pancreatic tissue classification using optical spectroscopy,” J. Biomed. Opt. 15(1), 010514 (2010). [CrossRef] [PubMed]
  13. W. H. Yong, P. V. Butte, B. K. Pikul, J. A. Jo, Q. Y. Fang, T. Papaioannou, K. Black, and L. Marcu, “Distinction of brain tissue, low grade and high grade glioma with time-resolved fluorescence spectroscopy,” Front. Biosci. 11(1), 1255–1263 (2006). [CrossRef] [PubMed]
  14. L. Marcu, J. A. Jo, P. V. Butte, W. H. Yong, B. K. Pikul, K. L. Black, and R. C. Thompson, “Fluorescence lifetime spectroscopy of glioblastoma multiforme,” Photochem. Photobiol. 80(1), 98–103 (2004). [CrossRef] [PubMed]
  15. M.-A. Mycek, K. T. Schomacker, and N. S. Nishioka, “Colonic polyp differentiation using time-resolved autofluorescence spectroscopy,” Gastrointest. Endosc. 48(4), 390–394 (1998). [CrossRef] [PubMed]
  16. K. Vishwanath and M.-A. Mycek, “Do fluorescence decays remitted from tissues accurately reflect intrinsic fluorophore lifetimes?” Opt. Lett. 29(13), 1512–1514 (2004). [CrossRef] [PubMed]
  17. P. Uehlinger, T. Gabrecht, T. Glanzmann, J.-P. Ballini, A. Radu, S. Andrejevic, P. Monnier, and G. Wagnières, “In vivo time-resolved spectroscopy of the human bronchial early cancer autofluorescence,” J. Biomed. Opt. 14(2), 024011 (2009). [CrossRef] [PubMed]
  18. N. Lois, and J. V. Forrester, Fundus Autofluorescence (Lippincott Williams & Wilkins, Philadelphia, 2009).
  19. F. G. Holz, and R. F. Spaide, Medical Retina: Focus on Retinal Imaging (Springer-Verlag, Berlin, 2010).
  20. L. Marcu, “Fluorescence lifetime in cardiovascular diagnostics,” J. Biomed. Opt. 15(1), 011106 (2010). [CrossRef] [PubMed]
  21. J. Blackwell, K. M. Katika, L. Pilon, K. M. Dipple, S. R. Levin, and A. Nouvong, “In vivo time-resolved autofluorescence measurements to test for glycation of human skin,” J. Biomed. Opt. 13(1), 014004 (2008). [CrossRef] [PubMed]
  22. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).
  23. K. Vishwanath, W. Zhong, M. Close, and M.-A. Mycek, “Fluorescence quenching by polystyrene microspheres in UV-visible and NIR tissue-simulating phantoms,” Opt. Express 14(17), 7776–7788 (2006). [CrossRef] [PubMed]
  24. A. J. Bystol, T. Thorstenson, and A. D. Campiglia, “Laser-induced multidimensional fluorescence spectroscopy in Shpol’skii matrixes for the analysis of polycyclic aromatic hydrocarbons in HPLC fractions and complex environmental extracts,” Environ. Sci. Technol. 36(20), 4424–4429 (2002). [CrossRef] [PubMed]
  25. A. J. Bystol, A. D. Campiglia, and G. D. Gillispie, “Laser-induced multidimensional fluorescence spectroscopy in Shpol’skii matrixes with a fiber-optic probe at liquid helium temperature,” Anal. Chem. 73(23), 5762–5770 (2001). [CrossRef] [PubMed]
  26. A. J. Bystol, A. D. Campiglia, and G. D. Gillispie, “Time-resolved laser-excited Shpol'skii spectrometry with a fiber-optic probe and ICCD camera,” Appl. Spectrosc. 54(6), 910–917 (2000). [CrossRef]
  27. R. Mekhala, D. S. Nadder, H. W. Robert, M. Mary-Ann, P. Nancy, H. K. David, and D. M. Michael, “Quantitative polarized Raman spectroscopy in highly turbid bone tissue,” J. Biomed. Opt. 15, 037001 (2010).
  28. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993). [CrossRef]
  29. D. Hai, F. Ru-Chun Amy, L. Junzhong, L. A. Corkan, and S. L. Jonathan, “PhotochemCAD: A Computer-Aided Design and Research Tool in Photochemistry,” Photochem. Photobiol. 68, 141–142 (1998).
  30. D. Magde, G. E. Rojas, and P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol. 70(5), 737–744 (1999). [CrossRef]
  31. K. Vishwanath, B. W. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47(18), 3387–3405 (2002). [CrossRef] [PubMed]
  32. K. Vishwanath and M.-A. Mycek, “Time-resolved photon migration in bi-layered tissue models,” Opt. Express 13(19), 7466–7482 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited