OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 2 — Sep. 1, 2010
  • pp: 587–597

Influence of laser parameters and staining on femtosecond laser-based intracellular nanosurgery

K. Kuetemeyer, R. Rezgui, H. Lubatschowski, and A. Heisterkamp  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 2, pp. 587-597 (2010)
http://dx.doi.org/10.1364/BOE.1.000587


View Full Text Article

Enhanced HTML    Acrobat PDF (1686 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Femtosecond (fs) laser-based intracellular nanosurgery has become an important tool in cell biology, albeit the mechanisms in the so-called low-density plasma regime are largely unknown. Previous calculations of free-electron densities for intracellular surgery used water as a model substance for biological media and neglected the presence of dye and biomolecules. In addition, it is still unclear on which time scales free-electron and free-radical induced chemical effects take place in a cellular environment. Here, we present our experimental study on the influence of laser parameters and staining on the intracellular ablation threshold in the low-density plasma regime. We found that the ablation effect of fs laser pulse trains resulted from the accumulation of single-shot multiphoton-induced photochemical effects finished within a few nanoseconds. At the threshold, the number of applied pulses was inversely proportional to a higher order of the irradiance, depending on the laser repetition rate and wavelength. Furthermore, fluorescence staining of subcellular structures before surgery significantly decreased the ablation threshold. Based on our findings, we propose that dye molecules are the major source for providing seed electrons for the ionization cascade. Consequently, future calculations of free-electron densities for intracellular nanosurgery have to take them into account, especially in the calculations of multiphoton ionization rates.

© 2010 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(190.4180) Nonlinear optics : Multiphoton processes
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Cell Studies

History
Original Manuscript: July 22, 2010
Revised Manuscript: August 5, 2010
Manuscript Accepted: August 5, 2010
Published: August 10, 2010

Virtual Issues
September 10, 2010 Spotlight on Optics

Citation
K. Kuetemeyer, R. Rezgui, H. Lubatschowski, and A. Heisterkamp, "Influence of laser parameters and staining on femtosecond laser-based intracellular nanosurgery," Biomed. Opt. Express 1, 587-597 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-2-587


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Koenig, I. Riemann, P. Fischer, and K. H. Halbhuber, “Intracellular nanosurgery with near infrared femtosecond laser pulses,” Cell Mol. Biol. 45, 195–201 (1999).
  2. K. Koenig, I. Riemann, and W. Fritzsche, “Nanodissection of human chromosomes with near-infrared femtosecond laser pulses,” Opt. Lett. 26, 819–821 (2001).
  3. U. K. Tirlapur and K. Koenig, “Targeted transfection by femtosecond laser,” Nature 418, 290–291 (2002).
  4. W. Watanabe, N. Arakawa, T. Higashi, K. Fukui, K. Isobe, K. Itoh, and S. Matsunaga, “Femtosecond laser disruption of subcellular organelles in a living cell,” Opt. Express 12, 4203–4213 (2004).
  5. I. Maxwell, S. Chung, and E. Mazur, “Nanoprocessing of subcellular targets using femtosecond laser pulses,” Med. Laser Appl. 20, 193–200 (2005).
  6. M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Functional regeneration after laser axotomy,” Nature 432, 822–822 (2004).
  7. W. Supatto, D. Debarre, B. Moulia, E. Brouzes, J. L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. USA 102, 1047–1052 (2005).
  8. L. Sacconi, R. P. O’Connor, A. Jasaitis, A. Masi, M. Buffelli, and F. S. Pavone, “In vivo multiphoton nanosurgery on cortical neurons,” J. Biomed. Opt. 12, 050502 (2007).
  9. A. L. Allegra Mascaro, L. Sacconi, and F. S. Pavone, “Multi-photon nanosurgery in live brain,” Front. Neuroen-erg. 2, 21 (2010).
  10. A. Vogel, J. Noack, G. Huettman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
  11. A. Heisterkamp, I. Z. Maxwell, J. M. Underwood, J. A. Nickerson, S. Kumar, D. E. Ingber, and E. Mazur, “Pulse energy dependence of subcellular dissection by femtosecond laser pulses,” Opt. Express 13, 3690–3696 (2005).
  12. L. Sacconi, I. M. Tolic-Norrelykke, R. Antolini, and F. S. Pavone, “Combined intracellular three-dimensional imaging and selective nanosurgery by a nonlinear microscope,” J. Biomed. Opt. 10, 014002 (2005).
  13. S. Kumar, I. Z. Maxwell, A. Heisterkamp, T. R. Polte, T. P. Lele, M. Salanga, E. Mazur, and D. E. Ingber, “Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics,” Biophys. J. 90, 3762–3773 (2006).
  14. T. Shimada, W. Watanabe, S. Matsunaga, T. Higashi, H. Ishii, K. Fukui, K. Isobe, and K. Itoh, “Intracellular disruption of mitochondria in a living HeLa cell with a 76-MHz femtosecond laser oscillator,” Opt. Express 13, 9869–9880 (2005).
  15. K. Kuetemeyer, A. Lucas-Hahn, B. Petersen, E. Lemme, P. Hassel, H. Niemann, and A. Heisterkamp, “Combined multiphoton imaging and automated functional enucleation of porcine oocytes using femtosecond laser pulses,” J. Biomed. Opt. 15, 046006 (2010).
  16. F. Bourgeois and A. Ben-Yakar, “Femtosecond laser nanoaxotomy properties and their effect on axonal recovery in C.elegans,” Opt. Express 15, 8521–8531 (2007).
  17. P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W.P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous-media: part II - comparison to experiment,” IEEE J. Quantum Electron. 31, 2250–2257 (1995).
  18. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: Implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
  19. B. Boudaiffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, “Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons,” Science 287, 1658–1660 (2000).
  20. L. Sanche, “Low energy electron-driven damage in biomolecules,” Eur. Phys. J. D 35, 367–390 (2005).
  21. D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser UV radiation,” Chem. Phys. 77, 131–143 (1983).
  22. F. Hutchinson, “Chemical-changes induced in DNA by ionizing-radiation,” Prog. Nucleic Acid Res. Mol. Biol. 32, 115–154 (1985).
  23. A. A. Oraevsky and D. N. Nikogosyan, “Picosecond two-quantum UV photochemistry of thymine in aqueous-solution,” Chem. Phys. 100, 429–445 (1985).
  24. U. K. Tirlapur, K. Koenig, C. Peuckert, R. Krieg, and K. J. Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res. 263, 88–97 (2001).
  25. J. Baumgart, K. Kuetemeyer, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, “Repetition rate dependency of reactive oxygen species formation during femtosecond laser-based cell surgery,” J. Biomed. Opt. 14, 054040 (2009).
  26. K. Kuetemeyer, J. Baumgart, H. Lubatschowski, and A. Heisterkamp, “Repetition rate dependency of low-density plasma effects during femtosecond-laser-based surgery of biological tissue,” Appl. Phys. B 97, 695–699 (2009).
  27. F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc-Oxford 208, 108–115 (2002).
  28. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Met. 2, 932–940 (2005).
  29. J. L. Boulnois, “Photophysical processes in recent medical laser developments: a review,” Laser Med. Sci. 1, 47–66 (1986).
  30. A. P. Reuvers, C. L. Greenstock, J. Borsa, and J. D. Chapman, “Studies on mechanism of chemical radioprotec-tion by dimethyl sulfoxide,” Int. J. Radiat. Biol. 24, 533–536 (1973).
  31. R. Roots and S. Okada, “Estimation of life times and diffusion distances of radicals involved in X-ray-induced DNA strand breaks or killing of mammalian cells,” Radiat. Res. 64, 306–320 (1975).
  32. J. F. Ward, “DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability,” Prog. Nucleic Acid Res. Mol. Biol. 35, 95–125 (1988).
  33. E. S. Williams, J. Stap, J. Essers, B. Ponnaiya, M. S. Luijsterburg, P. M. Krawczyk, R. L. Ullrich, J. A. Aten, and S. M. Bailey, “DNA double-strand breaks are not sufficient to initiate recruitment of TRF2,” Nat. Genet. 39, 696–698 (2007).
  34. C. Dinant, M. de Jager, J. Essers, W. A. van Cappellen, R. Kanaar, A. B. Houtsmuller, and W. Vermeulen, “Activation of multiple DNA repair pathways by subnuclear damage induction methods,” J. Cell Sci. 120, 2731–2740 (2007).
  35. J. E. Downing, W. M. Christopherson, and W. L. Broghamer, “Nuclear water content during carcinogenesis,” Cancer 15, 1176–1180 (1962).
  36. H. M. Golomb and G. F. Bahr, “Electron-microscopy of human interphase nuclei - determination of total dry mass and DNA-packing ratio,” Chromosoma 46, 233–245 (1974).
  37. F. G. Loontiens, P. Regenfuss, A. Zechel, L. Dumortier, and R. M. Clegg, “Binding characteristics of Hoechst 33258 with calf thymus DNA, Poly[d(A-T)], and d(CCGGAATTCCGG): multiple stoichiometries and determination of tight binding with a wide spectrum of site affinities,” Biochemistry-US 29, 9029–9039 (1990).
  38. I. Cohanoschi and F. E. Hernandez, “Surface plasmon enhancement of two- and three-photon absorption of Hoechst 33 258 dye in activated gold colloid solution,” J. Phys. Chem. B 109, 14506–14512 (2005).
  39. A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A 69, S373–S376 (1999).
  40. Y. Jee, M. F. Becker, and R. M. Walser, “Laser-induced damage on single-crystal metal surfaces,” J. Opt. Soc. Am. B 5, 648–659 (1988).
  41. F. Williams, S. P. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous-semiconductor,” J. Chem. Phys. 64, 1549–1554(1976).
  42. H. Goerner, “Direct and sensitized photoprocesses of bis-benzimidazole dyes and the effects of surfactants and DNA,” Photochem. Photobiol. 73, 339–348 (2001).
  43. E. Amouyal, A. Bernas, and D. Grand, “On the photoionization energy threshold of tryptophan in aqueous solutions,” Photochem. Photobiol. 29, 1071–1077 (1979).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited