OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 3 — Oct. 1, 2010
  • pp: 1034–1046

A predictive model of backscattering at subdiffusion length scales

Vladimir Turzhitsky, Andrew Radosevich, Jeremy D. Rogers, Allen Taflove, and Vadim Backman  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 3, pp. 1034-1046 (2010)
http://dx.doi.org/10.1364/BOE.1.001034


View Full Text Article

Enhanced HTML    Acrobat PDF (1227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We provide a methodology for accurately predicting elastic backscattering radial distributions from random media with two simple empirical models. We apply these models to predict the backscattering based on two classes of scattering phase functions: the Henyey-Greenstein phase function and a generalized two parameter phase function that is derived from the Whittle-Matérn correlation function. We demonstrate that the model has excellent agreement over all length scales and has less than 1% error for backscattering at subdiffusion length scales for tissue-relevant optical properties. The presented model is the first available approach for accurately predicting backscattering at length scales significantly smaller than the transport mean free path.

© 2010 OSA

OCIS Codes
(170.7050) Medical optics and biotechnology : Turbid media
(290.1350) Scattering : Backscattering
(290.3200) Scattering : Inverse scattering
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Optics of Tissue and Turbid Media

History
Original Manuscript: July 12, 2010
Revised Manuscript: August 27, 2010
Manuscript Accepted: September 26, 2010
Published: September 30, 2010

Citation
Vladimir Turzhitsky, Andrew Radosevich, Jeremy D. Rogers, Allen Taflove, and Vadim Backman, "A predictive model of backscattering at subdiffusion length scales," Biomed. Opt. Express 1, 1034-1046 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-3-1034


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992). [CrossRef] [PubMed]
  2. E. L. Hull and T. H. Foster, “Steady-state reflectance spectroscopy in the P-3 approximation,” J. Opt. Soc. Am. A 18(3), 584–599 (2001). [CrossRef]
  3. I. Seo, C. K. Hayakawa, and V. Venugopalan, “Radiative transport in the delta-P1 approximation for semi-infinite turbid media,” Med. Phys. 35(2), 681–693 (2008). [CrossRef] [PubMed]
  4. M. C. Skala, G. M. Palmer, C. F. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Lasers Surg. Med. 34(1), 25–38 (2004). [CrossRef] [PubMed]
  5. A. Amelink, H. J. C. M. Sterenborg, M. P. L. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29(10), 1087–1089 (2004). [CrossRef] [PubMed]
  6. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007). [CrossRef] [PubMed]
  7. Y. L. Kim, Y. Liu, V. M. Turzhitsky, H. K. Roy, R. K. Wali, and V. Backman, “Coherent backscattering spectroscopy,” Opt. Lett. 29(16), 1906–1908 (2004). [CrossRef] [PubMed]
  8. V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt. 47(32), 6046–6057 (2008). [CrossRef] [PubMed]
  9. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005). [CrossRef] [PubMed]
  10. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues,” Comput Meth. Prog Biol. 47(2), 131–146 (1995). [CrossRef]
  11. F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16(12), 2935–2945 (1999). [CrossRef]
  12. C. J. R. Sheppard, “Fractal model of light scattering in biological tissue and cells,” Opt. Lett. 32(2), 142–144 (2007). [CrossRef] [PubMed]
  13. J. D. Rogers, I. R. Capoğlu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett. 34(12), 1891–1893 (2009). [CrossRef] [PubMed]
  14. I. R. Çapoğlu, J. D. Rogers, A. Taflove, and V. Backman, “Accuracy of the Born approximation in calculating the scattering coefficient of biological continuous random media,” Opt. Lett. 34(17), 2679–2681 (2009). [CrossRef] [PubMed]
  15. A. Ishimaru, Wave propagation and scattering in random media (Academic Press, New York, 1978).
  16. P. Guttorp and T. Gneiting, “Studies in the history of probability and statistics XLIX On the Matern correlation family,” Biometrika 93(4), 989–995 (2006). [CrossRef]
  17. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13(25), 10392–10405 (2005). [CrossRef] [PubMed]
  18. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35(13), 2304–2314 (1996). [CrossRef]
  19. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992). [CrossRef] [PubMed]
  20. V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of Light Transport in Scattering Media at Subdiffusion Length Scales with Low-Coherence Enhanced Backscattering,” IEEE J. Sel. Top. Quantum Electron. 16(3), 619–626 (2010). [CrossRef]
  21. E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev. Lett. 56(14), 1471–1474 (1986). [CrossRef] [PubMed]
  22. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006). [CrossRef] [PubMed]
  23. L. V. Wang, “Rapid modeling of diffuse reflectance of light in turbid slabs,” J. Opt. Soc. Am. A 15(4), 936–944 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited