OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 3 — Oct. 1, 2010
  • pp: 748–761

Investigation of spectral interferences on the accuracy of broadband CW-NIRS tissue SO2 determination

Fengmei Zou, Chunguang Jin, Randy R. Ross, and Babs Soller  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 3, pp. 748-761 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1142 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An accurate SO2 prediction method for using broadband continuous-wave diffuse reflectance near infrared (NIR) spectroscopy is proposed. The method fitted the NIR spectra to a Taylor expansion attenuation model, and used the simulated annealing method to initialize the nonlinear least squares fit. This paper investigated the effect of potential spectral interferences that are likely to be encountered in clinical use, on SO2 prediction accuracy. The factors include the concentration of hemoglobin in blood, the volume of blood and volume of water in the tissue under the sensor, reduced scattering coefficient, µs', of the muscle, fat thickness and the source-detector spacing. The SO2 prediction method was evaluated on simulated muscle spectra as well as on dual-dye phantoms which simulate the absorbance of oxygenated and deoxygenated hemoglobin.

© 2010 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Spectroscopic Diagnostics

Original Manuscript: July 27, 2010
Revised Manuscript: August 21, 2010
Manuscript Accepted: August 25, 2010
Published: August 30, 2010

Fengmei Zou, Chunguang Jin, Randy R. Ross, and Babs Soller, "Investigation of spectral interferences on the accuracy of broadband CW-NIRS tissue SO2 determination," Biomed. Opt. Express 1, 748-761 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007). [CrossRef] [PubMed]
  2. J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth. 103(6Suppl 1), i3–i13 (2009). [CrossRef] [PubMed]
  3. E. Gerz, D. Geraskin, P. Neary, J. Franke, P. Platen, and M. Kohl-Bareis, “Tissue oxygenation during exercise measured with NIRS: a quality control study,” I. Georgakoudi, J. Popp, and K. Svanberg, eds., (SPIE, Munich, Germany, 2009), pp. 736816.
  4. D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt. 10(3), 034017 (2005). [CrossRef] [PubMed]
  5. Y. Yang, O. Soyemi, P. J. Scott, M. R. Landry, S. M. Lee, L. Stroud, and B. R. Soller, “Quantitative measurement of muscle oxygen saturation without influence from skin and fat using continuous-wave near infrared spectroscopy,” Opt. Express 15(21), 13715–13730 (2007). [CrossRef] [PubMed]
  6. Y. Teng, H. Ding, L. Huang, Y. Li, Q. Shan, D. Ye, H. Ding, J. Chien, and B. Hwang, “Non-invasive measurement and validation of tissue oxygen saturation covered with overlying tissues,” Prog. Nat. Sci. 18(9), 1083–1088 (2008). [CrossRef]
  7. G. A. Breit, J. H. Gross, D. E. Watenpaugh, B. R. I. T. Chance, and A. R. Hargens, “Near-infrared spectroscopy for monitoring of tissue oxygenation of exercising skeletal muscle in a chronic compartment syndrome model,” J. Bone Joint Surg. Am. 79(6), 838–843 (1997). [PubMed]
  8. F. Costes, F. Prieur, L. Féasson, A. Geyssant, J. C. Barthélémy, and C. Denis, “Influence of training on NIRS muscle oxygen saturation during submaximal exercise,” Med. Sci. Sports Exerc. 33(9), 1484–1489 (2001). [CrossRef] [PubMed]
  9. S. Shimizu, F. Chiarotti, M. Ferrari, A. Kagaya, V. Quaresima, S. Homma, and K. Azuma, “Calf and shin muscle oxygenation patterns and femoral artery blood flow during dynamic plantar flexion exercise in humans,” Eur. J. Appl. Physiol. 84(5), 387–394 (2001). [CrossRef] [PubMed]
  10. D. H. Glaister and F. F. Jöbsis-VanderVliet, “A near-infrared spectrophotometric method for studying brain O2 sufficiency in man during +Gz acceleration,” Aviat. Space Environ. Med. 59(3), 199–207 (1988). [PubMed]
  11. L. D. Tripp, J. S. Warm, G. Matthews, P. Y. Chiu, and R. B. Bracken, “On tracking the course of cerebral oxygen saturation and pilot performance during gravity-induced loss of consciousness,” Hum. Factors 51(6), 775–784 (2009). [CrossRef] [PubMed]
  12. D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988). [CrossRef] [PubMed]
  13. S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” in Optical Tomography and Spectroscopy of Tissue III, Britton Chance, Robert R.Alfano, and Bruce J.Tromberg, eds., (1999), pp. 582–592.
  14. S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” B. Chance and R. R. Alfano, eds., (SPIE, San Jose, CA, USA, 1995), pp. 486–495.
  15. S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999). [CrossRef] [PubMed]
  16. H. Liu, D. A. Boas, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40(11), 1983–1993 (1995). [CrossRef] [PubMed]
  17. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989). [CrossRef] [PubMed]
  18. S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995). [CrossRef]
  19. A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6(4), 457–467 (2001). [CrossRef] [PubMed]
  20. Y. Yang, M. R. Landry, O. O. Soyemi, M. A. Shear, D. S. Anunciacion, and B. R. Soller, “Simultaneous correction of the influence of skin color and fat on tissue spectroscopy by use of a two-distance fiber-optic probe and orthogonalization technique,” Opt. Lett. 30(17), 2269–2271 (2005). [CrossRef] [PubMed]
  21. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983). [CrossRef] [PubMed]
  22. V. Černý, “Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm,” J. Optim. Theory Appl. 45(1), 41–51 (1985). [CrossRef]
  23. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  24. Network for translational research optical imaging and Beckman Laser Institute & Medical Clinic, University of California - Irvine, “Appendix: Tissue Phantom Recipes,” in http://www.bli.uci.edu/ntroi/pubs/pdf/phantomrecipes.pdf , (2008).
  25. K. Levenberg, “A method for the solution of certain problems in least squares,” Q. Appl. Math. 2, 164–168 (1944).
  26. D. W. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963). [CrossRef]
  27. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995). [CrossRef] [PubMed]
  28. S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994). [CrossRef] [PubMed]
  29. Biomedical optics laboratory, University of London. Specific extinction spectra of tissue chromophores. http://www.medphys.ucl.ac.uk/research/borl/research/NIR_topics/spectra/spectra.htm . 2005.
  30. S. Luke, Essentials of Metaheuristics, available at http://cs.gmu.edu/~sean/book/metaheuristics/ , 2009.
  31. V. Granville, M. Krivanek, and J.-P. Rasson, “Simulated Annealing: A Proof of Convergence,” IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 652–656 (1994). [CrossRef]
  32. Open source Matlab code of the SA method, http://www.mathworks.com/matlabcentral/fileexchange/10548 , 2008.
  33. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992). [CrossRef] [PubMed]
  34. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998). [CrossRef] [PubMed]
  35. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997). [CrossRef] [PubMed]
  36. A. Savitzky and M. J. E. Golay, “Smoothing and Differentiation of Data by Simplified Least Squares Procedures,” Anal. Chem. 36(8), 1627–1639 (1964). [CrossRef]
  37. C. A. Andersson, “Direct orthogonalization,” Chemom. Intell. Lab. Syst. 47(1), 51–63 (1999). [CrossRef]
  38. J. Martin Bland and D. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986). [CrossRef]
  39. L. F. Ferreira, D. M. Hueber, and T. J. Barstow, “Effects of assuming constant optical scattering on measurements of muscle oxygenation by near-infrared spectroscopy during exercise,” J. Appl. Physiol. 102(1), 358–367 (2006). [CrossRef] [PubMed]
  40. S. Homma, T. Fukunaga, and A. Kagaya, “Influence of adipose tissue thickness on near-infrared spectroscopic signal in the measurement of human muscle,” J. Biomed. Opt. 1(4), 418–426 (1996). [CrossRef]
  41. M. C. van Beekvelt, M. S. Borghuis, B. G. van Engelen, R. A. Wevers, and W. N. Colier, “Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle,” Clin. Sci. 101(1), 21–28 (2001). [CrossRef] [PubMed]
  42. A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagniνres, and H. van den Bergh, “Noninvasive Determination of the Optical Properties of Two-Layered Turbid Media,” Appl. Opt. 37(4), 779–791 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited