OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 3 — Oct. 1, 2010
  • pp: 780–790

Fiber-optic and articulating arm implementations of laminar optical tomography for clinical applications

Sean A. Burgess, Désirée Ratner, Brenda R. Chen, and Elizabeth M. C. Hillman  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 3, pp. 780-790 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1543 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laminar optical tomography (LOT) is a recently developed technique for depth-resolved in vivo imaging of absorption and fluorescence contrast. Until now, LOT has been implemented in a benchtop configuration, limiting accessibility to tissues and restricting imaging applications. Here we report on LOT implemented through an articulating arm and a fiber optic image bundle allowing flexible imaging for a range of clinical applications. We quantify the performance of these two implementations by imaging a tissue mimicking phantom.

© 2010 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation

ToC Category:
Clinical Instrumentation

Original Manuscript: June 4, 2010
Revised Manuscript: August 28, 2010
Manuscript Accepted: August 31, 2010
Published: September 2, 2010

Virtual Issues
Bio-Optics in Clinical Application, Nanotechnology, and Drug Discovery (2010) Biomedical Optics Express

Sean A. Burgess, Désirée Ratner, Brenda R. Chen, and Elizabeth M. C. Hillman, "Fiber-optic and articulating arm implementations of laminar optical tomography for clinical applications," Biomed. Opt. Express 1, 780-790 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. de Leeuw, N. van der Beek, W. D. Neugebauer, P. Bjerring, and H. A. Neumann, “Fluorescence detection and diagnosis of non-melanoma skin cancer at an early stage,” Lasers Surg. Med. 41(2), 96–103 (2009). [CrossRef] [PubMed]
  2. B. Stenquist, M. B. Ericson, C. Strandeberg, L. Mölne, A. Rosén, O. Larkö, and A. M. Wennberg, “Bispectral fluorescence imaging of aggressive basal cell carcinoma combined with histopathological mapping: a preliminary study indicating a possible adjunct to Mohs micrographic surgery,” Br. J. Dermatol. 154(2), 305–309 (2006). [CrossRef] [PubMed]
  3. R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004). [CrossRef] [PubMed]
  4. K. B. Dunbar, P. Okolo, E. Montgomery, and M. I. Canto, “Confocal laser endomicroscopy in Barrett’s esophagus and endoscopically inapparent Barrett’s neoplasia: a prospective, randomized, double-blind, controlled, crossover trial,” Gastrointest. Endosc. 70(4), 645–654 (2009). [CrossRef] [PubMed]
  5. R. Kiesslich, L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P. R. Galle, and M. F. Neurath, “In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy,” Clin. Gastroenterol. Hepatol. 4(8), 979–987 (2006). [CrossRef] [PubMed]
  6. B. R. Haxel, M. Goetz, R. Kiesslich, and J. Gosepath, “Confocal endomicroscopy: a novel application for imaging of oral and oropharyngeal mucosa in human,” Eur. Arch. Otorhinolaryngol. 267(3), 443–448 (2010). [CrossRef] [PubMed]
  7. R. A. Schwarz, W. Gao, C. Redden Weber, C. Kurachi, J. J. Lee, A. K. El-Naggar, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy,” Cancer 115(8), 1669–1679 (2009). [CrossRef] [PubMed]
  8. J. Tan, M. A. Quinn, J. M. Pyman, P. M. Delaney, and W. J. McLaren, “Detection of cervical intraepithelial neoplasia in vivo using confocal endomicroscopy,” BJOG 116(12), 1663–1670 (2009). [CrossRef] [PubMed]
  9. M. Rajadhyaksha, R. R. Anderson, and R. H. Webb, “Video-rate confocal scanning laser microscope for imaging human tissues in vivo,” Appl. Opt. 38(10), 2105–2115 (1999). [CrossRef] [PubMed]
  10. E. M. C. Hillman, O. Bernus, E. Pease, M. B. Bouchard, and A. Pertsov, “Depth-resolved optical imaging of transmural electrical propagation in perfused heart,” Opt. Express 15(26), 17827–17841 (2007). [CrossRef] [PubMed]
  11. E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004). [CrossRef] [PubMed]
  12. S. A. Burgess, M. B. Bouchard, B. Yuan, and E. M. C. Hillman, “Simultaneous multiwavelength laminar optical tomography,” Opt. Lett. 33(22), 2710–2712 (2008). [CrossRef] [PubMed]
  13. N. Ouakli, E. Guevara, S. Dubeau, É. Beaumont, and F. Lesage, “Laminar optical tomography of the hemodynamic response in the lumbar spinal cord of rats,” Opt. Express 18(10), 10068–10077 (2010). [CrossRef] [PubMed]
  14. S. Yuan, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography,” Opt. Lett. 34(11), 1615–1617 (2009). [CrossRef] [PubMed]
  15. E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007). [CrossRef] [PubMed]
  16. P. M. Lane, S. Lam, A. McWilliams, J. C. Leriche, M. W. Anderson, and C. E. Macaulay, “Confocal fluorescence microendoscopy of bronchial epithelium,” J. Biomed. Opt. 14(2), 024008 (2009). [CrossRef] [PubMed]
  17. K. B. Sung, R. Richards-Kortum, M. Follen, A. Malpica, C. Liang, and M. Descour, “Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo,” Opt. Express 11(24), 3171–3181 (2003). [CrossRef] [PubMed]
  18. B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009). [CrossRef] [PubMed]
  19. F. C. Allard, Fiber optics handbook: for engineers and scientists, Optical and electro-optical engineering series (McGraw-Hill, New York, 1990), p. 549 p. in various pagings.
  20. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997). [CrossRef] [PubMed]
  21. M. Lualdi, A. Colombo, M. Carrara, L. Scienza, S. Tomatis, and R. Marchesini, “Optical devices used for image analysis of pigmented skin lesions: a proposal for quality assurance protocol using tissue-like phantoms,” Phys. Med. Biol. 51(23), N429–N440 (2006). [CrossRef] [PubMed]
  22. E. M. C. Hillman and S. A. Burgess, “Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography,” Laser Photon Rev 3(1-2), 159–179 (2009). [CrossRef] [PubMed]
  23. K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002). [CrossRef] [PubMed]
  24. R. Juškattis, T. Wilson, and T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited