OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 3 — Oct. 1, 2010
  • pp: 791–797

High-resolution fluorescence microscopy based on a cyclic sequential multiphoton process

Keisuke Isobe, Akira Suda, Hiroshi Hashimoto, Fumihiko Kannari, Hiroyuki Kawano, Hideaki Mizuno, Atsushi Miyawaki, and Katsumi Midorikawa  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 3, pp. 791-797 (2010)
http://dx.doi.org/10.1364/BOE.1.000791


View Full Text Article

Enhanced HTML    Acrobat PDF (2243 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate high-resolution fluorescence microscopy based on a cyclic sequential multiphoton (CSM) process, which gives rise to fluorescence emission following a sequence of cyclic transitions between the bright and dark states of a fluorophore induced by pump and reverse light. By temporally modulating the reverse intensity, we can extract the fluorescence signal generated through the CSM process. We show that the demodulated fluorescence signal is nonlinearly proportional to the excitation intensities and it gives a higher spatial resolution than that of a confocal microscope.

© 2010 OSA

OCIS Codes
(120.1880) Instrumentation, measurement, and metrology : Detection
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Microscopy

History
Original Manuscript: August 4, 2010
Revised Manuscript: August 19, 2010
Manuscript Accepted: September 2, 2010
Published: September 7, 2010

Citation
Keisuke Isobe, Akira Suda, Hiroshi Hashimoto, Fumihiko Kannari, Hiroyuki Kawano, Hideaki Mizuno, Atsushi Miyawaki, and Katsumi Midorikawa, "High-resolution fluorescence microscopy based on a cyclic sequential multiphoton process," Biomed. Opt. Express 1, 791-797 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-3-791


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Johnson, “Fluorescent probes for living cells,” Histochem. J. 30(3), 123–140 (1998). [CrossRef] [PubMed]
  2. R. Y. Tsien, “The green fluorescent protein,” Annu. Rev. Biochem. 67(1), 509–544 (1998). [CrossRef] [PubMed]
  3. A. Miyawaki, “Innovations in the imaging of brain functions using fluorescent proteins,” Neuron 48(2), 189–199 (2005). [CrossRef] [PubMed]
  4. B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, “The fluorescent toolbox for assessing protein location and function,” Science 312(5771), 217–224 (2006). [CrossRef] [PubMed]
  5. J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer Science and Business Media, 2006).
  6. A. Diaspro, Nanoscopy and Multidimensional Optical Fluorescence Microscopy (Francis and Taylor, 2010).
  7. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  8. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002). [CrossRef] [PubMed]
  9. K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007). [CrossRef] [PubMed]
  10. N. Bobroff, “Position measurement with a resolution and noise-limited instrument,” Rev. Sci. Instrum. 57(6), 1152–1157 (1986). [CrossRef]
  11. E. Betzig, “Proposed method for molecular optical imaging,” Opt. Lett. 20(3), 237–239 (1995). [CrossRef] [PubMed]
  12. T. H. Schmidt, G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. U.S.A. 93(7), 2926–2929 (1996). [CrossRef] [PubMed]
  13. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  14. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  15. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  16. A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A. C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, and S. W. Hell, “Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters,” Biophys. J. 93(9), 3285–3290 (2007). [CrossRef] [PubMed]
  17. M. Heilemann, D. P. Herten, R. Heintzmann, C. Cremer, C. Müller, P. Tinnefeld, K. D. Weston, J. Wolfrum, and M. Sauer, “High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy,” Anal. Chem. 74(14), 3511–3517 (2002). [CrossRef] [PubMed]
  18. P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008). [CrossRef]
  19. B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A. 105(38), 14271–14276 (2008). [CrossRef] [PubMed]
  20. L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008). [CrossRef] [PubMed]
  21. H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods 5(5), 417–423 (2008). [CrossRef] [PubMed]
  22. B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5(12), 1047–1052 (2008). [CrossRef] [PubMed]
  23. K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007). [CrossRef] [PubMed]
  24. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  25. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000). [CrossRef] [PubMed]
  26. R. Ando, C. Flors, H. Mizuno, J. Hofkens, and A. Miyawaki, “Highlighted generation of fluorescence signals using simultaneous two-color irradiation on Dronpa mutants,” Biophys. J. 92(12), L97–L99 (2007). [CrossRef] [PubMed]
  27. J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Stochastic scanning multiphoton multifocal microscopy,” Opt. Express 14(8), 3406–3414 (2006). [CrossRef] [PubMed]
  28. K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: Application to patterned self-assembled monolayers,” Appl. Phys. Lett. 83(18), 3830–3832 (2003). [CrossRef]
  29. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  30. Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17(5), 3651–3658 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited