OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 3 — Oct. 1, 2010
  • pp: 825–847

Image analysis for classification of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography

Xin Qi, Yinsheng Pan, Michael V. Sivak, Jr., Joseph E. Willis, Gerard Isenberg, and Andrew M. Rollins  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 3, pp. 825-847 (2010)
http://dx.doi.org/10.1364/BOE.1.000825


View Full Text Article

Enhanced HTML    Acrobat PDF (2427 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Barrett’s esophagus (BE) and associated adenocarcinoma have emerged as a major health care problem. Endoscopic optical coherence tomography is a microscopic sub-surface imaging technology that has been shown to differentiate tissue layers of the gastrointestinal wall and identify dysplasia in the mucosa, and is proposed as a surveillance tool to aid in management of BE. In this work a computer-aided diagnosis (CAD) system has been demonstrated for classification of dysplasia in Barrett’s esophagus using EOCT. The system is composed of four modules: region of interest segmentation, dysplasia-related image feature extraction, feature selection, and site classification and validation. Multiple feature extraction and classification methods were evaluated and the process of developing the CAD system is described in detail. Use of multiple EOCT images to classify a single site was also investigated. A total of 96 EOCT image-biopsy pairs (63 non-dysplastic, 26 low-grade and 7 high-grade dysplastic biopsy sites) from a previously described clinical study were analyzed using the CAD system, yielding an accuracy of 84% for classification of non-dysplastic vs. dysplastic BE tissue. The results motivate continued development of CAD to potentially enable EOCT surveillance of large surface areas of Barrett’s mucosa to identify dysplasia.

© 2010 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(110.4500) Imaging systems : Optical coherence tomography
(170.2150) Medical optics and biotechnology : Endoscopic imaging

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: August 2, 2010
Revised Manuscript: September 7, 2010
Manuscript Accepted: September 7, 2010
Published: September 9, 2010

Citation
Xin Qi, Yinsheng Pan, Michael V. Sivak, Joseph E. Willis, Gerard Isenberg, and Andrew M. Rollins, "Image analysis for classification of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography," Biomed. Opt. Express 1, 825-847 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-3-825


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. R. DeVault, “Epidemiology and significance of Barrett’s esophagus,” Dig. Dis. 18(4), 195–202 (2000). [CrossRef] [PubMed]
  2. R. E. Sampliner and Practice Parameters Committee of the American College of Gastroenterology, “Updated guidelines for the diagnosis, surveillance, and therapy of Barrett’s esophagus,” Am. J. Gastroenterol. 97(8), 1888–1895 (2002). [CrossRef] [PubMed]
  3. R. Tutuian and D. O. Castell, “Barrett’s esophagus prevalence and epidemiology,” Gastrointest. Endosc. Clin. N. Am. 13(2), 227–232 (2003). [CrossRef] [PubMed]
  4. M. Solaymani-Dodaran, R. F. Logan, J. West, and T. Card, “Mortality associated with Barrett’s esophagus and gastroesophageal reflux disease diagnoses-a population-based cohort study,” Am. J. Gastroenterol. 100(12), 2616–2621 (2005). [CrossRef] [PubMed]
  5. M. Vieth, B. Schubert, K. Lang-Schwarz, and M. Stolte, “Frequency of Barrett’s neoplasia after initial negative endoscopy with biopsy: a long-term histopathological follow-up study,” Endoscopy 38(12), 1201–1205 (2006). [CrossRef] [PubMed]
  6. H. Sayana, S. Wani, and P. Sharma, “Esophageal adenocarcinoma and Barrett’s esophagus,” Minerva Gastroenterol. Dietol. 53(2), 157–169 (2007). [PubMed]
  7. C. C. Maley and A. K. Rustgi, “Barrett’s esophagus and its progression to adenocarcinoma,” J. Natl. Compr. Canc. Netw. 4(4), 367–374 (2006). [PubMed]
  8. J. L. Hornick and R. D. Odze, “Neoplastic precursor lesions in Barrett’s esophagus,” Gastroenterol. Clin. North Am. 36(4), 775–796, v (2007). [CrossRef] [PubMed]
  9. P. Sharma, K. McQuaid, J. Dent, M. B. Fennerty, R. Sampliner, S. Spechler, A. Cameron, D. Corley, G. Falk, J. Goldblum, J. Hunter, J. Jankowski, L. Lundell, B. Reid, N. J. Shaheen, A. Sonnenberg, K. Wang, W. Weinstein, and AGA Chicago Workshop, “A critical review of the diagnosis and management of Barrett’s esophagus: the AGA Chicago Workshop,” Gastroenterology 127(1), 310–330 (2004). [CrossRef] [PubMed]
  10. B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography,” Gastrointest. Endosc. 51(4), 467–474 (2000). [CrossRef] [PubMed]
  11. M. V. J. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51(4), 474–479 (2000). [CrossRef] [PubMed]
  12. X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical Coherence Tomography: Advanced Technology for the Endoscopic Imaging of Barrett’s Esophagus,” Endoscopy 32(12), 921–930 (2000). [CrossRef] [PubMed]
  13. S. Jäckle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schröder, and N. Soehendra, “In vivo endoscopic optical coherence tomography of esophagitis, Barrett’s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32(10), 750–755 (2000). [CrossRef] [PubMed]
  14. G. A. Isenberg and M. V. Sivak., “Gastrointestinal optical coherence tomography,” Tech. Gastrointest. Endosc. 5(2), 94–101 (2003). [CrossRef]
  15. V. Westphal, A. M. Rollins, J. Willis, M. V. Sivak, and J. A. Izatt, “Correlation of endoscopic optical coherence tomography with histology in the lower-GI tract,” Gastrointest. Endosc. 61(4), 537–546 (2005). [CrossRef] [PubMed]
  16. P. R. Pfau, M. V. Sivak, A. Chak, M. Kinnard, R. C. Wong, G. A. Isenberg, J. A. Izatt, A. Rollins, and V. Westphal, “Criteria for the diagnosis of dysplasia by endoscopic optical coherence tomography,” Gastrointest. Endosc. 58(2), 196–202 (2003). [CrossRef] [PubMed]
  17. G. A. Isenberg, M. V. Sivak, A. Chak, R. C. K. Wong, J. E. Willis, B. Wolf, D. Y. Rowland, A. Das, and A. M. Rollins, “Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, double-blinded study,” Gastrointest. Endosc. 62(6), 825–831 (2005). [CrossRef] [PubMed]
  18. J. A. Evans, J. M. Poneros, B. E. Bouma, J. Bressner, E. F. Halpern, M. Shishkov, G. Y. Lauwers, M. Mino-Kenudson, N. S. Nishioka, and G. J. Tearney, “Optical coherence tomography to identify intramucosal carcinoma and high-grade dysplasia in Barrett’s esophagus,” Clin. Gastroenterol. Hepatol. 4(1), 38–43 (2006). [CrossRef] [PubMed]
  19. X. Qi, M. V. Sivak, G. Isenberg, J. E. Willis, and A. M. Rollins, “Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” J. Biomed. Opt. 11(4), 044010 (2006). [CrossRef] [PubMed]
  20. C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35(2), 87–92 (2000). [CrossRef] [PubMed]
  21. J. M. Poneros, S. Brand, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Diagnosis of specialized intestinal metaplasia by optical coherence tomography,” Gastroenterology 120(1), 7–12 (2001). [CrossRef] [PubMed]
  22. J. M. Poneros, “Diagnosis of Barrett’s esophagus using optical coherence tomography,” Gastrointest. Endosc. Clin. N. Am. 14(3), 573–588, x (2004). [CrossRef] [PubMed]
  23. L. J. Warren Burhenne, S. A. Wood, C. J. D’Orsi, S. A. Feig, D. B. Kopans, K. F. O’Shaughnessy, E. A. Sickles, L. Tabar, C. J. Vyborny, and R. A. Castellino, “Potential contribution of computer-aided detection to the sensitivity of screening mammography,” Radiology 215(2), 554–562 (2000). [PubMed]
  24. B. Sahiner, N. Petrick, H. P. Chan, L. M. Hadjiiski, C. Paramagul, M. A. Helvie, and M. N. Gurcan, “Computer-aided characterization of mammographic masses: accuracy of mass segmentation and its effects on characterization,” IEEE Trans. Med. Imaging 20(12), 1275–1284 (2001). [CrossRef] [PubMed]
  25. R. L. Ellis, A. A. Meade, M. A. Mathiason, K. M. Willison, and W. Logan-Young, “Evaluation of computer-aided detection systems in the detection of small invasive breast carcinoma,” Radiology 245(1), 88–94 (2007). [CrossRef] [PubMed]
  26. S. B. Göktürk, C. Tomasi, B. Acar, C. F. Beaulieu, D. S. Paik, R. B. Jeffrey, J. Yee, and S. Napel, “A statistical 3-D pattern processing method for computer-aided detection of polyps in CT colonography,” IEEE Trans. Med. Imaging 20(12), 1251–1260 (2001). [CrossRef] [PubMed]
  27. R. M. Summers, “Challenges for computer-aided diagnosis for CT colonography,” Abdom. Imaging 27(3), 268–274 (2002). [PubMed]
  28. K. Suzuki, F. Li, S. Sone, and K. Doi, “Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network,” IEEE Trans. Med. Imaging 24(9), 1138–1150 (2005). [CrossRef] [PubMed]
  29. D. G. Vince, K. J. Dixon, R. M. Cothren, and J. F. Cornhill, “Comparison of texture analysis methods for the characterization of coronary plaques in intravascular ultrasound images,” Comput. Med. Imaging Graph. 24(4), 221–229 (2000). [CrossRef] [PubMed]
  30. K. Horsch, M. L. Giger, L. A. Venta, and C. J. Vyborny, “Computerized diagnosis of breast lesions on ultrasound,” Med. Phys. 29(2), 157–164 (2002). [CrossRef] [PubMed]
  31. C. M. Chen, Y. H. Chou, K. C. Han, G. S. Hung, C. M. Tiu, H. J. Chiou, and S. Y. Chiou, “Breast lesions on sonograms: computer-aided diagnosis with nearly setting-independent features and artificial neural networks,” Radiology 226(2), 504–514 (2003). [CrossRef] [PubMed]
  32. S. Joo, Y. S. Yang, W. K. Moon, and H. C. Kim, “Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features,” IEEE Trans. Med. Imaging 23(10), 1292–1300 (2004). [CrossRef] [PubMed]
  33. K. Horsch, M. L. Giger, C. J. Vyborny, and L. A. Venta, “Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography,” Acad. Radiol. 11(3), 272–280 (2004). [CrossRef] [PubMed]
  34. B. Sahiner, H. P. Chan, M. A. Roubidoux, L. M. Hadjiiski, M. A. Helvie, C. Paramagul, J. Bailey, A. V. Nees, and C. Blane, “Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy,” Radiology 242(3), 716–724 (2007). [CrossRef] [PubMed]
  35. K. G. A. Gilhuijs, M. L. Giger, and U. Bick, “Computerized analysis of breast lesions in three dimensions using dynamic magnetic-resonance imaging,” Med. Phys. 25(9), 1647–1654 (1998). [CrossRef] [PubMed]
  36. W. Chen, M. L. Giger, L. Lan, and U. Bick, “Computerized interpretation of breast MRI: investigation of enhancement-variance dynamics,” Med. Phys. 31(5), 1076–1082 (2004). [CrossRef] [PubMed]
  37. P. M. White, E. M. Teasdale, J. M. Wardlaw, and V. Easton, “Intracranial aneurysms: CT angiography and MR angiography for detection prospective blinded comparison in a large patient cohort,” Radiology 219(3), 739–749 (2001). [PubMed]
  38. F. M. Hall, “Improved sensitivity of mammography with computer-aided detection,” AJR Am. J. Roentgenol. 182(6), 1598–1599 (2004). [PubMed]
  39. S. H. Taplin, C. M. Rutter, and C. D. Lehman, “Testing the effect of computer-assisted detection on interpretive performance in screening mammography,” AJR Am. J. Roentgenol. 187(6), 1475–1482 (2006). [CrossRef] [PubMed]
  40. S. V. Destounis, P. DiNitto, W. Logan-Young, E. Bonaccio, M. L. Zuley, and K. M. Willison, “Can computer-aided detection with double reading of screening mammograms help decrease the false-negative rate? Initial experience,” Radiology 232(2), 578–584 (2004). [CrossRef] [PubMed]
  41. D. Gur, J. H. Sumkin, H. E. Rockette, M. Ganott, C. Hakim, L. Hardesty, W. R. Poller, R. Shah, and L. Wallace, “Changes in breast cancer detection and mammography recall rates after the introduction of a computer-aided detection system,” J. Natl. Cancer Inst. 96(3), 185–190 (2004). [CrossRef] [PubMed]
  42. M. L. Giger, N. Karssemeijer, and S. G. Armato, “Computer-aided diagnosis in medical imaging,” IEEE Trans. Med. Imaging 20(12), 1205–1208 (2001). [CrossRef] [PubMed]
  43. I. Sluimer, A. Schilham, M. Prokop, and B. van Ginneken, “Computer analysis of computed tomography scans of the lung: a survey,” IEEE Trans. Med. Imaging 25(4), 385–405 (2006). [CrossRef] [PubMed]
  44. R. L. Van Uitert and R. M. Summers, “Automatic correction of level set based subvoxel precise centerlines for virtual colonoscopy using the colon outer wall,” IEEE Trans. Med. Imaging 26(8), 1069–1078 (2007). [CrossRef] [PubMed]
  45. S. Timp, C. Varela, and N. Karssemeijer, “Temporal change analysis for characterization of mass lesions in mammography,” IEEE Trans. Med. Imaging 26(7), 945–953 (2007). [CrossRef] [PubMed]
  46. M. A. Kupinski and M. L. Giger, “Automated seeded lesion segmentation on digital mammograms,” IEEE Trans. Med. Imaging 17(4), 510–517 (1998). [CrossRef] [PubMed]
  47. N. Petrick, H. P. Chan, D. Wei, B. Sahiner, M. A. Helvie, and D. D. Adler, “Automated detection of breast masses on mammograms using adaptive contrast enhancement and texture classification,” Med. Phys. 23(10), 1685–1696 (1996). [CrossRef] [PubMed]
  48. Z. Huo, M. L. Giger, D. E. Wolverton, W. Zhong, S. Cumming, and O. I. Olopade, “Computerized analysis of mammographic parenchymal patterns for breast cancer risk assessment: feature selection,” Med. Phys. 27(1), 4–12 (2000). [CrossRef] [PubMed]
  49. B. van Ginneken, S. Katsuragawa, B. M. ter Haar Romeny, K. Doi, and M. A. Viergever, “Automatic detection of abnormalities in chest radiographs using local texture analysis,” IEEE Trans. Med. Imaging 21(2), 139–149 (2002). [CrossRef] [PubMed]
  50. X. Qi, M. V. Sivak, D. L. Wilson, and A. M. R. Rollins, “Computer Aided diagnosis (CAD) of dysplasia in Barrett's esophagus (BE) using endoscopic optical coherence tomography (EOCT),” Gastroenterology 126, A351 (2004).
  51. G. W. Falk, T. W. Rice, J. R. Goldblum, and J. E. Richter, “Jumbo biopsy forceps protocol still misses unsuspected cancer in Barrett’s esophagus with high-grade dysplasia,” Gastrointest. Endosc. 49(2), 170–176 (1999). [CrossRef] [PubMed]
  52. A. M. Rollins, S. Yazdanfar, M. Kulkarni, R. Ung-Arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3(6), 219–229 (1998). [CrossRef] [PubMed]
  53. A. M. Rollins, R. Ung-Arunyawee, A. Chak, R. C. K. Wong, K. Kobayashi, M. V. Sivak, and J. A. Izatt, “Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,” Opt. Lett. 24(19), 1358–1360 (1999). [CrossRef] [PubMed]
  54. A. Das, M. V. Sivak, A. Chak, R.C.K. Wong, V. Westphal, A.M. Rollins, J. Izatt, G.A. Isenberg, and J. Willis, “Role of high-resolution endoscopic imaging using optical coherence tomography (OCT) in patients with Barrett's esophagus (BE),” Gastrointest. Endosc. 51, AB93, Part92 (2000).
  55. Y. Chen, A. D. Aguirre, P. L. Hsiung, S. Desai, P. R. Herz, M. Pedrosa, Q. Huang, M. Figueiredo, S. W. Huang, A. Koski, J. M. Schmitt, J. G. Fujimoto, and H. Mashimo, “Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology,” Endoscopy 39(7), 599–605 (2007). [CrossRef] [PubMed]
  56. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32(30), 6032–6042 (1993). [CrossRef]
  57. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994). [CrossRef] [PubMed]
  58. B. B. Chaudhuri, P. Kundu, and N. Sarkar, “Detection and gradation of oriented texture,” Pattern Recognit. Lett. 14(2), 147–153 (1993). [CrossRef]
  59. W. Karlon, J. W. Covell, A. D. Mcculloch, J. J. Hunter, and J. H. Omens, “Automated measurement of myofiber disarray in transgenic mice with ventricular expression of ras,” Anat. Rec. 252(4), 612–625 (1998). [CrossRef]
  60. N. I. Fisher, Statistical analysis of circular data, (Cambridge: Cambridge University Press, 1993).
  61. I. Pitas, Digital image processing algorithms and applications, (John Wiley & Sons, 2000).
  62. M. Tuceryan, and A. K. Jain, “Texture analysis,” the Handbook of Pattern Recognition and Computer Vision, 207–248 (1998).
  63. D. Harwood, T. Ojala, M. Pietikainen, S. Kelman, and L. Davis, “Texture classification by center-symmetric auto-correlation using Kullback discrimination of distributions,” Pattern Recognit. Lett. 16(1), 1–10 (1995). [CrossRef]
  64. R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973). [CrossRef]
  65. R. M. Haralick, “Statistical and structural approaches to texture,” Proc. SPIE 67, 786–804 (1979).
  66. M. H. Horng, Y. N. Sun, and X. Z. Lin, “Texture feature coding method for classification of liver sonography,” Comput. Med. Imaging Graph. 26(1), 33–42 (2002). [CrossRef] [PubMed]
  67. K. Laws, “Rapid texture identification,” Proc. SPIE 238, 376–380 (1980).
  68. J. Reunanen, I. Guyon, and A. Elisseeff, “Overfitting in making comparisons between variable selection methods,” J. Mach. Learn. Res. 3(7-8), 1371–1382 (2003). [CrossRef]
  69. L. Yu and H. Liu, “Efficient feature selection via analysis of relevant and redundancy,” J. Mach. Learn. Res. 5, 1205–1224 (2004).
  70. I. T. Jolliffe, Principal component analysis, (Springer-Verlag New York Inc, 1986).
  71. R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Ann. Eugen. 7, 179–188 (1936).
  72. T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Inf. Theory 13(1), 21–27 (1967). [CrossRef]
  73. M. Caudill, and C. Butler, Understanding neural networks: computer explorations, (Cambridge, MA: The MIT Press 1 &2, 1992).
  74. T. Kohonen, Self-organization and associative memory, (Berlin:Springer-Verlag, 1987).
  75. L. Breiman, J. H. Friedman, R. A. Olsen, and C. J. Stone, Classification and regression tree, (Chapman & Hall, New York, 1984).
  76. B. D. Ripley, “Pattern Recognition,” (1996).
  77. J. Park and D. W. Edington, “A sequential neural network model for diabetes prediction,” Artif. Intell. Med. 23(3), 277–293 (2001). [CrossRef] [PubMed]
  78. B. Efron, “Bootstrap methods: another look at the jackknife,” Ann. Stat. 7(1), 1–26 (1979). [CrossRef]
  79. B. Efron and R.J. Tibshirani, “An introduction to the bootstrap,” (1993).
  80. T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: data mining, inference and prediction, (Springer-Verlag New York Inc, 2001).
  81. L. Breiman, “Bagging predictors,” Mach. Learn. 24(2), 123–140 (1996). [CrossRef]
  82. L. Breiman, “Arcing classifiers,” Ann. Stat. 26, 801–849 (1998).
  83. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12(12), 1429–1433 (2007). [CrossRef] [PubMed]
  84. B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastrointest. Endosc. 65(6), 898–905 (2007). [CrossRef] [PubMed]
  85. G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Ponsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenterol. 96(9), 2633–2639 (2001). [CrossRef] [PubMed]
  86. D. C. Adler, C. Zhou, T. H. Tsai, H. C. Lee, L. Becker, J. M. Schmitt, Q. Huang, J. G. Fujimoto, and H. Mashimo, “Three-dimensional optical coherence tomography of Barrett’s esophagus and buried glands beneath neosquamous epithelium following radiofrequency ablation,” Endoscopy 41(9), 773–776 (2009). [CrossRef] [PubMed]
  87. A. M. Prasad, L. R. Iverson, and A. Liaw, “Newer classification and regression tree techniques: bagging and random forests for ecological prediction,” Ecosystems (N. Y.) 9(2), 181–199 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited