OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 3 — Oct. 1, 2010
  • pp: 848–860

Formation and characterization of an ideal excitation beam geometry in an optofluidic device

Benjamin R. Watts, Thomas Kowpak, Zhiyi Zhang, Chang-Qing Xu, and Shiping Zhu  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 3, pp. 848-860 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2597 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optimal excitation beam shape is necessary to perform reliable flow cytometric analysis but has so far not been implemented in a photonic-microfluidic integrated (i.e. optofluidic) device. We have achieved this feature by integrating a 1D lens system with planar waveguides and microfluidic channel on a substrate using one patterning material via a one-shot process. In this paper, we report the method of design and the performance of specifically formed excitation regions shaped to be ideal for reducing double detections, improving SNR, and for reliable detection in a flow cytometry application. Demonstration of different sizes via changes to lens design shows the ability to control the width of the shaped beam according to a targeted detection.

© 2010 OSA

OCIS Codes
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.2945) Medical optics and biotechnology : Illumination design
(130.3990) Integrated optics : Micro-optical devices

ToC Category:

Original Manuscript: June 17, 2010
Revised Manuscript: August 9, 2010
Manuscript Accepted: August 16, 2010
Published: September 14, 2010

Benjamin R. Watts, Thomas Kowpak, Zhiyi Zhang, Chang-Qing Xu, and Shiping Zhu, "Formation and characterization of an ideal excitation beam geometry in an optofluidic device," Biomed. Opt. Express 1, 848-860 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. G. Ashcroft and P. A. Lopez, “Commercial high speed machines open new opportunities in high throughput flow cytometry (HTFC),” J. Immunol. Methods 243(1-2), 13–24 (2000). [CrossRef] [PubMed]
  2. S. F. Ibrahim and G. van den Engh, “High-speed cell sorting: fundamentals and recent advances,” Curr. Opin. Biotechnol. 14(1), 5–12 (2003). [CrossRef] [PubMed]
  3. M. Bigos, N. Baumgarth, G. C. Jager, O. C. Herman, T. Nozaki, R. T. Stovel, D. R. Parks, and L. A. Herzenberg, “Nine color eleven parameter immunophenotyping using three laser flow cytometry,” Cytometry 36(1), 36–45 (1999). [CrossRef] [PubMed]
  4. S. P. Perfetto, P. K. Chattopadhyay, and M. Roederer, “Seventeen-colour flow cytometry: unravelling the immune system,” Nat. Rev. Immunol. 4(8), 648–655 (2004). [CrossRef] [PubMed]
  5. J. V. Giorgi, J. L. Fahey, D. C. Smith, L. E. Hultin, H. L. Cheng, R. T. Mitsuyasu, and R. Detels, “Early Effects of HIV on CD4 Lyphocytes in Vivo,” J. Immunol. 134, 3725–3730 (1987).
  6. F. W. Kuckuck, B. S. Edwards, and L. A. Sklar, “High throughput flow cytometry,” Cytometry 44(1), 83–90 (2001). [CrossRef] [PubMed]
  7. D. Mabey, R. W. Peeling, A. Ustianowski, and M. D. Perkins, “Diagnostics for the developing world,” Nat. Rev. Microbiol. 2(3), 231–240 (2004). [CrossRef] [PubMed]
  8. A. S. Daar, H. Thorsteinsdóttir, D. K. Martin, A. C. Smith, S. Nast, and P. A. Singer, “Top ten biotechnologies for improving health in developing countries,” Nat. Genet. 32(2), 229–232 (2002). [CrossRef] [PubMed]
  9. B. H. Robertson and J. K. A. Nicholson, “New microbiology tools for public health and their implications,” Annu. Rev. Public Health 26(1), 281–302 (2005). [CrossRef] [PubMed]
  10. M. A. McClain, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Flow Cytometry of Escherichia coli on Microfluidic Devcies,” Anal. Chem. 73(21), 5334–5338 (2001). [CrossRef] [PubMed]
  11. N. Pamme, R. Koyama, and A. Manz, “Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay,” Lab Chip 3(3), 187–192 (2003). [CrossRef] [PubMed]
  12. A. Y. Fu, H. P. Chou, C. Spence, F. H. Arnold, and S. R. Quake, “An integrated microfabricated cell sorter,” Anal. Chem. 74(11), 2451–2457 (2002). [CrossRef] [PubMed]
  13. A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003). [CrossRef] [PubMed]
  14. K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 42(19), 4072–4079 (2003). [CrossRef] [PubMed]
  15. B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, and S. Zhu, “A microfluidic-photonic-integrated device with enhanced excitation power density,” Proc. SPIE 7555, (2010).
  16. B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005). [CrossRef] [PubMed]
  17. O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006). [CrossRef] [PubMed]
  18. S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006). [CrossRef] [PubMed]
  19. K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005). [CrossRef] [PubMed]
  20. C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection,” Lab Chip 8(1), 143–151 (2007). [CrossRef] [PubMed]
  21. S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003). [CrossRef] [PubMed]
  22. S. Park, Y. Jeong, J. Kim, K. Choi, K. C. Kim, D. S. Chung, and K. Chun, “Fabrication of Poly(dimethylsiloxane) Microlens for Laser-Induced Fluorescence Detection,” Jpn. J. Appl. Phys. 45(No. 6B), 5614–5617 (2006). [CrossRef]
  23. J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Actuators B Chem. 99(2-3), 615–622 (2004). [CrossRef]
  24. S.-K. Hsiung, C.-H. Lin, and G.-B. Lee, “A microfabricated capillary electrophoresis chip with multiple buried optical fibres and microfocusing lens for multiwavelength detection,” Electrophoresis 26(6), 1122–1129 (2005). [CrossRef]
  25. Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004). [CrossRef] [PubMed]
  26. H. M. Shapiro, Practical Flow Cytometry, (John Wiley & Sons, 2003).
  27. isT. Kowpak, B. R. Watts, Z. Zhang, S. Zhu, and C. Xu, “Fabrication of Photonic/Microfluidic Integrated Devices Using an Epoxy Photoresist,” Macromol. Mater. Eng. 295(6), 559–565 (2010). [CrossRef]
  28. C. Mu, Z. Zhang, M. Lin, X. Cao, and Z. Zhang, “Microchip-based flow cytometry for Effective Detection and Count,” Proc. SPIE 7386, E1–E9 (2009).
  29. A. Yariv, and P. Yeh, Photonics, (Oxford University Press, 2007).
  30. Z. Zhang, P. Zhao, and G. Xiao, “The fabrication of polymer microfluidic devices using a solid-to-solid interfacial polyaddition,” Polymer (Guildf.) 50(23), 5358–5361 (2009). [CrossRef]
  31. M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited