OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 3 — Oct. 1, 2010
  • pp: 861–878

Implementation of the equation of radiative transfer on block-structured grids for modeling light propagation in tissue

Ludguier D. Montejo, Alexander D. Klose, and Andreas H. Hielscher  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 3, pp. 861-878 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3883 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the first algorithm for solving the equation of radiative transfer (ERT) in the frequency domain (FD) on three-dimensional block-structured Cartesian grids (BSG). This algorithm allows for accurate modeling of light propagation in media of arbitrary shape with air-tissue refractive index mismatch at the boundary at increased speed compared to currently available structured grid algorithms. To accurately model arbitrarily shaped geometries the algorithm generates BSGs that are finely discretized only near physical boundaries and therefore less dense than fine grids. We discretize the FD-ERT using a combination of the upwind-step method and the discrete ordinates (SN ) approximation. The source iteration technique is used to obtain the solution. We implement a first order interpolation scheme when traversing between coarse and fine grid regions. Effects of geometry and optical parameters on algorithm performance are evaluated using numerical phantoms (circular, cylindrical, and arbitrary shape) and varying the absorption and scattering coefficients, modulation frequency, and refractive index. The solution on a 3-level BSG is obtained up to 4.2 times faster than the solution on a single fine grid, with minimal increase in numerical error (less than 5%).

© 2010 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(170.3660) Medical optics and biotechnology : Light propagation in tissues

ToC Category:
Optics of Tissue and Turbid Media

Original Manuscript: June 8, 2010
Revised Manuscript: September 12, 2010
Manuscript Accepted: September 13, 2010
Published: September 13, 2010

Virtual Issues
Optical Imaging and Spectroscopy (2010) Biomedical Optics Express

Ludguier D. Montejo, Alexander D. Klose, and Andreas H. Hielscher, "Implementation of the equation of radiative transfer on block-structured grids for modeling light propagation in tissue," Biomed. Opt. Express 1, 861-878 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. J. Welch, and M. J. C. Van Gemert, Optical-thermal response of laser-irradiated tissue, (Plenum Press, New York, NY, 1995).
  2. S.A. Prahl, M. Keijzer, S.L. Jacques, A.J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, SPIE Institute Series IS (5) 102–111 (1989).
  3. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995). [CrossRef] [PubMed]
  4. A. D. Klose, “Radiative Transfer of Luminescence in Biological Tissue”, in Light Scattering Reviews, Volume 4, A.A. Kokhanovsky (Ed.), 293–345 (Springer, Berlin, 2009).
  5. A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26(8), 1698–1707 (1999). [CrossRef] [PubMed]
  6. A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 1: forward model,” J. Quant. Spectrosc. Radiat. Transf. 72(5), 691–713 (2002). [CrossRef]
  7. A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43(5), 1285–1302 (1998). [CrossRef] [PubMed]
  8. K. Ren, G. S. Abdoulaev, G. Bal, and A. H. Hielscher, “Algorithm for solving the equation of radiative transfer in the frequency domain,” Opt. Lett. 29(6), 578–580 (2004). [CrossRef] [PubMed]
  9. H. K. Kim and A. H. Hielscher, “A PDE-constrained SQP algorithm for optical tomography based on the frequency-domain equation of radiative transfer,” Inverse Probl. 25(1), 015010 (2009). [CrossRef]
  10. O. Dorn, “A transport-backtransport method for optical tomography,” Inverse Probl. 14(5), 1107–1130 (1998). [CrossRef]
  11. M. B. Salah, F. Askri, and S. B. Nasrallah, “Unstructured control-volume finite element method for radiative heat transfer in a complex 2-D geometry,” Numer. Heat Transf. B 48(5), 477–497 (2005). [CrossRef]
  12. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992). [CrossRef] [PubMed]
  13. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993). [CrossRef] [PubMed]
  14. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989). [CrossRef] [PubMed]
  15. M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33(10), 1963–1974 (1994). [CrossRef]
  16. V. D. Liseikin, Grid generation methods, Second Edition (Springer, Netherlands, 2010).
  17. J. C. Rasmussen, A. Joshi, T. Pan, T. Wareing, J. McGhee, and E. M. Sevick-Muraca, “Radiative transport in fluorescence-enhanced frequency domain photon migration,” Med. Phys. 33(12), 4685–4700 (2006). [CrossRef] [PubMed]
  18. X. Gu, K. Ren, and A. H. Hielscher, “Frequency-domain sensitivity analysis for small imaging domains using the equation of radiative transfer,” Appl. Opt. 46(10), 1624–1632 (2007). [CrossRef] [PubMed]
  19. A. D. Klose and A. H. Hielscher, “Fluorescence tomography with simulated data based on the equation of radiative transfer,” Opt. Lett. 28(12), 1019–1021 (2003). [CrossRef] [PubMed]
  20. A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202(1), 323–345 (2005). [CrossRef]
  21. A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37(1), 329–338 (2010). [CrossRef] [PubMed]
  22. J. M. Lasker, J. M. Masciotti, M. Schoenecker, C. H. Schmitz, and A. H. Hielscher, “Digital-signal-processor-based dynamic imaging system for optical tomography,” Rev. Sci. Instrum. 78(8), 083706 (2007). [CrossRef] [PubMed]
  23. B. W. Pogue and G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37(31), 7429–7436 (1998). [CrossRef] [PubMed]
  24. R. B. Simpson, “Automatic local refinement for irregular rectangular meshes,” Int. J. Numer. Methods Eng. 14(11), 1665–1678 (1979). [CrossRef]
  25. M. J. Berger and J. Oliger, “Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations,” J. Comput. Phys. 53(3), 484–512 (1984). [CrossRef]
  26. W. L. Chen, F. S. Lien, and M. A. Leschziner, “Local mesh refinement within a multi-block structured-grid scheme for genereal flows,” Comput. Methods Appl. Mech. Eng. 144(3-4), 327–369 (1997). [CrossRef]
  27. M. J. Berger and P. Colella, “Local adaptive mesh refinement for shock-hydrodynamics,” J. Comput. Phys. 82(1), 64–84 (1989). [CrossRef]
  28. J. P. Jessee, W. A. Fiveland, L. H. Howell, P. Colella, and R. B. Pember, “An Adaptive Mesh Refinement Algorithm for the Radiative Transport Equation,” J. Comput. Phys. 139(2), 380–398 (1998). [CrossRef]
  29. A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection,” Med. Phys. 33(5), 1299–1310 (2006). [CrossRef] [PubMed]
  30. A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16(1), 79–88 (2005). [CrossRef] [PubMed]
  31. A. K. Scheel, M. Backhaus, A. D. Klose, B. Moa-Anderson, U. J. Netz, K. G. Hermann, J. Beuthan, G. A. Müller, G. R. Burmester, and A. H. Hielscher, “First clinical evaluation of sagittal laser optical tomography for detection of synovitis in arthritic finger joints,” Ann. Rheum. Dis. 64(2), 239–245 (2005). [CrossRef] [PubMed]
  32. B. J. Tromberg, L. O. Svaasand, T. T. Tsay, and R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32(4), 607–616 (1993). [CrossRef] [PubMed]
  33. U. J. Netz, J. Beuthan, and A. H. Hielscher, “Multipixel system for gigahertz frequency-domain optical imaging of finger joints,” Rev. Sci. Instrum. 79(3), 034301 (2008). [CrossRef] [PubMed]
  34. V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006). [CrossRef] [PubMed]
  35. M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008). [CrossRef] [PubMed]
  36. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005). [CrossRef] [PubMed]
  37. O. Gheysens and F. M. Mottaghy, “Method of bioluminescence imaging for molecular imaging of physiological and pathological processes,” Methods 48(2), 139–145 (2009). [CrossRef] [PubMed]
  38. K. M. Case, and P. F. Zweifel, Linear transport theory, (Addison-Wesley, Reading, 1967).
  39. J. J. Duderstadt, and W. R. Martin, Transport theory, (John Wiley, New York, 1979).
  40. E. E. Lewis, and W. F. Miller, Computational Methods of Neutron Transport, (Wiley, New York, 1984).
  41. B. G. Carlson, and K. D. Lathrop, “Transport theory - the method of discrete ordinates”, in Computing Methods in Reactor Physics, H. Greenspan et al, eds. (Gordon and Breach, New York, 1968, pp. 166–266).
  42. K. E. Atkinson, An Introduction to Numerical Analysis, 2nd ed., (John Wiley & Sons, Canada, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited