OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 3 — Oct. 1, 2010
  • pp: 879–894

Effect of temporal location of correction of monochromatic aberrations on the dynamic accommodation response

Karen M. Hampson, Sem Sem Chin, and Edward A. H. Mallen  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 3, pp. 879-894 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (4108 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dynamic correction of monochromatic aberrations of the eye is known to affect the accommodation response to a step change in stimulus vergence. We used an adaptive optics system to determine how the temporal location of the correction affects the response. The system consists of a Shack-Hartmann sensor sampling at 20 Hz and a 37-actuator piezoelectric deformable mirror. An extra sensing channel allows for an independent measure of the accommodation level of the eye. The accommodation response of four subjects was measured during a +/− 0.5 D step change in stimulus vergence whilst aberrations were corrected at various time locations. We found that continued correction of aberrations after the step change decreased the gain for disaccommodation, but increased the gain for accommodation. These results could be explained based on the initial lag of accommodation to the stimulus and changes in the level of aberrations before and after the stimulus step change. Future considerations for investigations of the effect of monochromatic aberrations on the dynamic accommodation response are discussed.

© 2010 OSA

OCIS Codes
(330.7322) Vision, color, and visual optics : Visual optics, accommodation
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: July 13, 2010
Revised Manuscript: August 18, 2010
Manuscript Accepted: September 13, 2010
Published: September 14, 2010

Karen M. Hampson, Sem Sem Chin, and Edward A. H. Mallen, "Effect of temporal location of correction of monochromatic aberrations on the dynamic accommodation response," Biomed. Opt. Express 1, 879-894 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. F. Fincham, “The accommodation reflex and its stimulus,” Br. J. Ophthalmol. 35(7), 381–393 (1951). [CrossRef] [PubMed]
  2. G. Walsh and W. N. Charman, “The effect of defocus on the contrast and phase of the retinal image of a sinusoidal grating,” Ophthalmic Physiol. Opt. 9(4), 398–404 (1989). [CrossRef] [PubMed]
  3. B. J. Wilson, K. E. Decker, and A. Roorda, “Monochromatic aberrations provide an odd-error cue to focus direction,” J. Opt. Soc. Am. A 19(5), 833–839 (2002). [CrossRef] [PubMed]
  4. L. Stark, P. Kruger, F. Rucker, W. Swanson, N. Schmidt, C. Hardy, H. Rutman, T. Borgovan, S. Burke, M. Badar, and R. Shah, “Potential signal to accommodation from the Stiles-Crawford effect and ocular monochromatic aberrations,” J. Mod. Opt. 56(20), 2203–2216 (2009). [CrossRef]
  5. E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4, 1–15 (2009). [CrossRef] [PubMed]
  6. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001). [CrossRef]
  7. H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 16, 272–280 (2004).
  8. K. M. Hampson, “Adaptive optics and vision,” J. Mod. Opt. 55(21), 3425–3467 (2008). [CrossRef]
  9. E. J. Fernández and P. Artal, “Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics,” J. Opt. Soc. Am. A 22(9), 1732–1738 (2005). [CrossRef] [PubMed]
  10. L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, “Accommodation with higher-order monochromatic aberrations corrected with adaptive optics,” J. Opt. Soc. Am. A 23(1), 1–8 (2006). [CrossRef] [PubMed]
  11. S. R. Bharadwaj and C. M. Schor, “Dynamic control of ocular disaccommodation: first and second-order dynamics,” Vision Res. 46(6-7), 1019–1037 (2006). [CrossRef] [PubMed]
  12. S. S. Chin, K. M. Hampson, and E. A. H. Mallen, “Role of ocular aberrations in dynamic accommodation control,” Clin. Exp. Optom. 92(3), 227–237 (2009). [CrossRef] [PubMed]
  13. M. Khosroyani and G. K. Hung, “A dual-mode dynamic model of the human accommodation system,” Bull. Math. Biol. 64(2), 285–299 (2002). [CrossRef] [PubMed]
  14. K. M. Hampson, S. S. Chin, and E. A. H. Mallen, “Dual wavefront sensing channel monocular adaptive optics system for accommodation studies,” Opt. Express 17(20), 18229–18240 (2009). [CrossRef] [PubMed]
  15. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002). [PubMed]
  16. F. W. Campbell and G. Westheimer, “Dynamics of accommodation responses of the human eye,” J. Physiol. 151, 285–295 (1960). [PubMed]
  17. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004). [CrossRef] [PubMed]
  18. C. M. Schor and S. R. Bharadwaj, “Pulse-step models of control strategies for dynamic ocular accommodation and disaccommodation,” Vision Res. 46(1-2), 242–258 (2006). [CrossRef] [PubMed]
  19. S. R. Bharadwaj, I. Vedamurthy, and C. M. Schor, “Short-term adaptive modification of dynamic ocular accommodation,” Invest. Ophthalmol. Vis. Sci. 50(7), 3520–3528 (2009). [CrossRef] [PubMed]
  20. J. van der Wildt, M. A. Bouman, and J. van de Kraats, “The effect of anticipation on the transfer function of the human lens system,” J. Mod. Opt. 21(11), 843–860 (1974). [CrossRef]
  21. S. S. Chin, K. M. Hampson, and E. A. H. Mallen, “Effect of correction of ocular aberration dynamics on the accommodation response to a sinusoidally moving stimulus,” Opt. Lett. 34(21), 3274–3276 (2009). [CrossRef] [PubMed]
  22. G. M. Tondel and T. R. Candy, “Human infants’ accommodation responses to dynamic stimuli,” Invest. Ophthalmol. Vis. Sci. 48(2), 949–956 (2007). [CrossRef] [PubMed]
  23. R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Vergence accommodation and monocular closed loop blur accommodation have similar dynamic characteristics,” Vision Res. 47(3), 327–337 (2007). [CrossRef] [PubMed]
  24. H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vision Res. 48(17), 1804–1811 (2008). [CrossRef] [PubMed]
  25. K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refract. Surg. 35(11), 1885–1892 (2009). [CrossRef] [PubMed]
  26. S. Mucke, V. Manahilov, N. C. Strang, D. Seidel, and L. S. Gray, “New type of perceptual suppression during dynamic ocular accommodation,” Curr. Biol. 18(13), R555–R556 (2008). [CrossRef] [PubMed]
  27. S. S. Chin, “Adaptive optics, aberration dynamics and accommodation control,” PhD Thesis, University of Bradford (2009).
  28. K. J. Ciuffreda, “Accommodation and its anomalies,” in Vision and Visual Dysfunction, W. N. Charman ed. (Macmillan, London, UK, 1991).
  29. J. C. Kotulak and C. M. Schor, “A computational model of the error detector of human visual accommodation,” Biol. Cybern. 54(3), 189–194 (1986). [CrossRef] [PubMed]
  30. T. Yamada and K. Ukai, “Amount of defocus is not used as an error signal in the control system of accommodation dynamics,” Ophthalmic Physiol. Opt. 17(1), 55–60 (1997). [CrossRef] [PubMed]
  31. R. N. Goldstone, E. H. Yildiz, V. C. Fan, and P. A. Asbell, “Changes in higher order wavefront aberrations after contact lens corneal refractive therapy and LASIK surgery,” J. Refract. Surg. 26(5), 348–355 (2010). [CrossRef] [PubMed]
  32. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4), 281–287 (2004). [CrossRef] [PubMed]
  33. P. M. Allen, H. Radhakrishnan, S. M. Rae, R. I. Calver, B. P. Theagarayan, P. Nelson, E. Osuobeni, A. Sailoganathan, H. Price, and D. J. O’Leary, “Aberration control and vision training as an effective means of improving accommodation in individuals with myopia,” Invest. Ophthalmol. Vis. Sci. 50(11), 5120–5129 (2009). [CrossRef] [PubMed]
  34. J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002). [CrossRef] [PubMed]
  35. J. R. Jiménez, J. J. Castro, R. Jiménez, and E. Hita, “Interocular differences in higher-order aberrations on binocular visual performance,” Optom. Vis. Sci. 85(3), 174–179 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited