OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 3 — Oct. 1, 2010
  • pp: 923–942

Spectral and spatial dependence of diffuse optical signals in response to peripheral nerve stimulation

Debbie K. Chen, M. Kelley Erb, Yunjie Tong, Yang Yu, Angelo Sassaroli, Peter R. Bergethon, and Sergio Fantini  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 3, pp. 923-942 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3498 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using non-invasive, near-infrared spectroscopy we have previously reported optical signals measured at or around peripheral nerves in response to their stimulation. Such optical signals featured amplitudes on the order of 0.1% and peaked about 100 ms after peripheral nerve stimulation in human subjects. Here, we report a study of the spatial and spectral dependence of the optical signals induced by stimulation of the human median and sural nerves, and observe that these optical signals are: (1) unlikely due to either dilation or constriction of blood vessels, (2) not associated with capillary bed hemoglobin, (3) likely due to blood vessel(s) displacement, and (4) unlikely due to fiber-skin optical coupling effects. We conclude that the most probable origin of the optical response to peripheral nerve stimulation is from displacement of blood vessels within the optically probed volume, as a result of muscle twitch in adjacent areas.

© 2010 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Spectroscopic Diagnostics

Original Manuscript: June 8, 2010
Revised Manuscript: August 20, 2010
Manuscript Accepted: September 14, 2010
Published: September 16, 2010

Virtual Issues
Optical Imaging and Spectroscopy (2010) Biomedical Optics Express

Debbie K. Chen, M. Kelley Erb, Yunjie Tong, Yang Yu, Angelo Sassaroli, Peter R. Bergethon, and Sergio Fantini, "Spectral and spatial dependence of diffuse optical signals in response to peripheral nerve stimulation," Biomed. Opt. Express 1, 923-942 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Tong, J. M. Martin, A. Sassaroli, P. R. Clervil, P. R. Bergethon, and S. Fantini, “Fast optical signals in the peripheral nervous system,” J. Biomed. Opt. 11(4), 044014 (2006). [CrossRef] [PubMed]
  2. D. K. Chen, Y. Tong, A. Sassaroli, P. R. Bergethon, and S. Fantini, “Fast optical response to electrical activation in peripheral nerves,” Proc. SPIE 6431, 643104 (2007).
  3. S. Fantini, D. K. Chen, J. M. Martin, A. Sassaroli, and P. R. Bergethon, “Optical characterization of near-infrared signals associated with electrical stimulation of peripheral nerves,” Proc. SPIE 7174, 717401 (2009).
  4. D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, and J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14(5), 977–994 (2001). [CrossRef] [PubMed]
  5. J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syré, F. Thomas, H. Wabnitz, H. Rinneberg, and A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291(2), 105–108 (2000). [CrossRef] [PubMed]
  6. B. D. Niederhauser, B. P. Rosenbaum, J. C. Gore, and A. A. Jarquin-Valdivia, “A functional near-infrared spectroscopy study to detect activation of somatosensory cortex by peripheral nerve stimulation,” Neurocrit. Care 9(1), 31–36 (2008). [CrossRef] [PubMed]
  7. M. A. Franceschini and D. A. Boas, “Noninvasive measurement of neuronal activity with near-infrared optical imaging,” Neuroimage 21(1), 372–386 (2004). [CrossRef] [PubMed]
  8. M. Takeuchi, E. Hori, K. Takamoto, A. H. Tran, K. Satoru, A. Ishikawa, T. Ono, S. Endo, and H. Nishijo, “Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation,” Brain Topogr. 22(3), 197–214 (2009). [CrossRef] [PubMed]
  9. H. Liu, H. Radhakrishnan, A. K. Senapati, C. E. Hagains, D. Peswani, A. Mathker, and Y. Bo Peng, “Near infrared and visible spectroscopic measurements to detect changes in light scattering and hemoglobin oxygen saturation from rat spinal cord during peripheral stimulation,” Neuroimage 40(1), 217–227 (2008). [CrossRef] [PubMed]
  10. F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett. 454(1), 105–109 (2009). [CrossRef] [PubMed]
  11. S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002). [CrossRef] [PubMed]
  12. J. Steinbrink, F. C. Kempf, A. Villringer, and H. Obrig, “The fast optical signal--robust or elusive when non-invasively measured in the human adult?” Neuroimage 26(4), 996–1008 (2005). [CrossRef] [PubMed]
  13. H. Radhakrishnan, W. Vanduffel, H. P. Deng, L. Ekstrom, D. A. Boas, and M. A. Franceschini, “Fast optical signal not detected in awake behaving monkeys,” Neuroimage 45(2), 410–419 (2009). [CrossRef] [PubMed]
  14. S. Lebid, T. Ward, R. O'Neill, C. Markham, and S. Coyle, “Towards dual modality nerve assessment using electrical and optical techniques,” Proc. SPIE 5855, 399–402 (2005).
  15. C. Casavola, L. A. Paunescu, S. Fantini, and E. Gratton, “Blood flow and oxygen consumption with near-infrared spectroscopy and venous occlusion: spatial maps and the effect of time and pressure of inflation,” J. Biomed. Opt. 5(3), 269–276 (2000). [CrossRef] [PubMed]
  16. N. B. Hampson and C. A. Piantadosi, “Near infrared monitoring of human skeletal muscle oxygenation during forearm ischemia,” J. Appl. Physiol. 64(6), 2449–2457 (1988). [PubMed]
  17. T. V. Vo, P. E. Hammer, M. L. Hoimes, S. Nadgir, and S. Fantini, “Mathematical model for the hemodynamic response to venous occlusion measured with near-infrared spectroscopy in the human forearm,” IEEE Trans. Biomed. Eng. 54(4), 573–584 (2007). [CrossRef] [PubMed]
  18. R. A. De Blasi, S. Fantini, M. A. Franceschini, M. Ferrari, and E. Gratton, “Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer,” Med. Biol. Eng. Comput. 33(2), 228–230 (1995). [CrossRef] [PubMed]
  19. M. C. P. Van Beekvelt, W. N. Colier, B. G. M. van Engelen, M. T. E. Hopman, R. A. Wevers, and B. Oeseburg, “Validation of measurement protocols to assess oxygen consumption and blood flow in the human forearm by near-infrared spectroscopy,” Proc. SPIE 3194, 133–144 (1998).
  20. G. B. Y. Tee, A. H. G. Rasool, A. S. Halim, and A. R. A. Rahman, “Dependence of human forearm skin postocclusive reactive hyperemia on occlusion time,” J. Pharmacol. Toxicol. Methods 50(1), 73–78 (2004). [CrossRef] [PubMed]
  21. V. Quaresima, M. Ferrari, M. A. Franceschini, M. L. Hoimes, and S. Fantini, “Spatial distribution of vastus lateralis blood flow and oxyhemoglobin saturation measured at the end of isometric quadriceps contraction by multichannel near-infrared spectroscopy,” J. Biomed. Opt. 9(2), 413–420 (2004). [CrossRef] [PubMed]
  22. A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. II. Continuous-wave results,” J. Opt. Soc. Am. A 23(9), 2119–2131 (2006). [CrossRef] [PubMed]
  23. A. Sassaroli, F. Martelli, and S. Fantini, “Higher-order perturbation theory for the diffusion equation in heterogeneous media: application to layered and slab geometries,” Appl. Opt. 48(10), D62–D73 (2009). [CrossRef] [PubMed]
  24. P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003). [CrossRef] [PubMed]
  25. M. Franceschini, D. J. Wallace, B. B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical study of the skeletal muscle during exercise with a second-generation frequency-domain tissue oximeter,” Proc. SPIE 2979, 807–814 (1997).
  26. M. Ferrari, T. Binzoni, and V. Quaresima, “Oxidative metabolism in muscle,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 677–683 (1997). [CrossRef] [PubMed]
  27. C. J. Lambertsen, P. L. Bunce, D. L. Drabkin, and C. F. Schmidt, “Relationship of oxygen tension to hemoglobin oxygen saturation in the arterial blood of normal men,” J. Appl. Physiol. 4(12), 873–885 (1952). [PubMed]
  28. E. Beutler and J. Waalen, “The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration?” Blood 107(5), 1747–1750 (2006). [CrossRef] [PubMed]
  29. V. Quaresima, S. Sacco, R. Totaro, and M. Ferrari, “Noninvasive measurement of cerebral hemoglobin oxygen saturation using two near infrared spectroscopy approaches,” J. Biomed. Opt. 5(2), 201–205 (2000). [CrossRef] [PubMed]
  30. W. H. Press, W. T. Vetterling, S. A. Teukolsky, and B. P. Flannery, Numerical recipes in Fortran 77: the art of scientific computing (Cambridge University Press, 1992).
  31. W. G. El-Barrany, A. G. Marei, and B. Vallée, “Anatomic basis of vascularised nerve grafts: the blood supply of peripheral nerves,” Surg. Radiol. Anat. 21(2), 95–102 (1999). [CrossRef] [PubMed]
  32. D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988). [CrossRef] [PubMed]
  33. M. Belau, M. Ninck, G. Hering, and T. Gisler, ” Non-Invasive Measurement of Skeletal Muscle Contraction with Time-Resolved Diffusing-Wave Spectroscopy,” Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2010) paper BSuD70.
  34. R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron. 9(2), 343–346 (2003). [CrossRef]
  35. F. Z. Li, X. G. Yi, H. S. Liu, Y. X. Wang, and Y. K. Wang, “The blood vessels and nerves of the dorsalis pedis flap,” Clin. Anat. 2(1), 9–16 (1989). [CrossRef]
  36. F. Buchthal and H. Schmalbruch, “Contraction times and fibre types in intact human muscle,” Acta Physiol. Scand. 79(4), 435–452 (1970). [CrossRef] [PubMed]
  37. H. Nakajima, N. Imanishi, S. Fukuzumi, T. Minabe, Y. Fukui, T. Miyasaka, T. Kodama, S. Aiso, and T. Fujino, “Accompanying arteries of the lesser saphenous vein and sural nerve: anatomic study and its clinical applications,” Plast. Reconstr. Surg. 103(1), 104–120 (1999). [CrossRef] [PubMed]
  38. M. J. Blunt, “The vascular anatomy of the median nerve in the forearm and hand,” J. Anat. 93(1), 15–22 (1959). [PubMed]
  39. M. K. Erb, D. K. Chen, A. Sassaroli, S. Fantini, and P. R. Bergethon, “Diffuse optical signals in response to peripheral nerve stimulation reflect skeletal muscle kinematics,” Biomed. Opt. Express . submitted.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited