OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 3 — Oct. 1, 2010
  • pp: 975–982

Cancer field effects in normal tissues revealed by Raman spectroscopy

Chad A. Lieber, Hubert E. Nethercott, and Mustafa H. Kabeer  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 3, pp. 975-982 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2476 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It has been demonstrated that the presence of cancer results in detectable changes to uninvolved tissues, collectively termed cancer field effects (CFE). In this study, we directly assessed the ability of Raman microspectroscopy to detect CFE via in-vitro study of organotypic tissue rafts approximating human skin. Raman spectra were measured from both epidermis and dermis after transfer of the rafts to dishes containing adherent cultures of either normal human fibroblasts or fibrosarcoma (HT1080) cells. Principal components analyses allowed discrimination between the groups with 86% classification accuracy in the epidermis and 94% in the dermis. These results encourage further study to evaluate the Raman capacity for detecting CFE as a possible tool for noninvasive screening for tumor presence.

© 2010 OSA

OCIS Codes
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Spectroscopic Diagnostics

Original Manuscript: August 30, 2010
Revised Manuscript: September 13, 2010
Manuscript Accepted: September 18, 2010
Published: September 20, 2010

Chad A. Lieber, Hubert E. Nethercott, and Mustafa H. Kabeer, "Cancer field effects in normal tissues revealed by Raman spectroscopy," Biomed. Opt. Express 1, 975-982 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. E. Nieburgs, R. G. Zak, D. C. Allen, H. Reisman, and T. Clardy, “Systemic cellular changes in material from human and animal tissues in presence of tumors,” Transactions of the Seventh Annual Meeting of the International Society of Cytology Council 137(1959).
  2. O. De Wever and M. Mareel, “Role of tissue stroma in cancer cell invasion,” J. Pathol. 200(4), 429–447 (2003). [CrossRef] [PubMed]
  3. H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology 135(4), 1069–1078 (2008). [CrossRef] [PubMed]
  4. H. K. Roy, Y. L. Kim, R. K. Wali, Y. Liu, J. Koetsier, D. P. Kunte, M. J. Goldberg, and V. Backman, “Spectral markers in preneoplastic intestinal mucosa: an accurate predictor of tumor risk in the MIN mouse,” Cancer Epidemiol. Biomarkers Prev. 14(7), 1639–1645 (2005). [CrossRef] [PubMed]
  5. H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126(4), 1071–1081, discussion 948 (2004). [CrossRef] [PubMed]
  6. J. T. Motz, M. Fitzmaurice, A. Miller, S. J. Gandhi, A. S. Haka, L. H. Galindo, R. R. Dasari, J. R. Kramer, and M. S. Feld, “In vivo Raman spectral pathology of human atherosclerosis and vulnerable plaque,” J. Biomed. Opt. 11(2), 021003 (2006). [CrossRef] [PubMed]
  7. A. Robichaux-Viehoever, E. Kanter, H. Shappell, D. Billheimer, H. Jones, and A. Mahadevan-Jansen, “Characterization of Raman spectra measured in vivo for the detection of cervical dysplasia,” Appl. Spectrosc. 61(9), 986–993 (2007). [CrossRef] [PubMed]
  8. A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, J. Lyons, D. Hicks, M. Fitzmaurice, R. R. Dasari, J. P. Crowe, and M. S. Feld, “In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy,” Cancer Res. 66(6), 3317–3322 (2006). [CrossRef] [PubMed]
  9. C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers Surg. Med. 40(7), 461–467 (2008). [CrossRef] [PubMed]
  10. M. D. Keller, E. M. Kanter, C. A. Lieber, S. K. Majumder, J. Hutchings, D. L. Ellis, R. B. Beaven, N. Stone, and A. Mahadevan-Jansen, “Detecting temporal and spatial effects of epithelial cancers with Raman spectroscopy,” Dis. Markers 25(6), 323–337 (2008). [PubMed]
  11. A. Robichaux Viehoever, D. Anderson, D. Jansen, and A. Mahadevan-Jansen, “Organotypic raft cultures as an effective in vitro tool for understanding Raman spectral analysis of tissue,” Photochem. Photobiol. 78(5), 517–524 (2003). [CrossRef] [PubMed]
  12. C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57(11), 1363–1367 (2003). [CrossRef] [PubMed]
  13. H. G. M. Edwards, A. C. Williams, and B. W. Barry, “Potential applications of FT-Raman spectroscopy for dermatological diagnostics,” J. Mol. Struct. 347, 379–387 (1995). [CrossRef]
  14. C. J. Frank, R. L. McCreery, and D. C. Redd, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67(5), 777–783 (1995). [CrossRef] [PubMed]
  15. H. Rokos, J. Moore, S. Hasse, J. M. Gillbro, J. M. Wood, and K. U. Schallreuter, “In vivo fluorescence excitation spectroscopy andin vivo Fourier-transform Raman spectroscopy in human skin: evidence of H2O2 oxidation of epidermal albumin in patients with vitiligo,” Journal of Raman Spectroscopy 35(2), 125–130 (2004). [CrossRef]
  16. Z. Huang, A. McWilliams, S. Lam, J. English, D. I. McLean, H. Lui, and H. Zeng, “Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues,” Int. J. Oncol. 23(3), 649–655 (2003). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited