OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 3 — Oct. 1, 2010
  • pp: 983–997

Mass-transport limitations in spot-based microarrays

Ming Zhao, Xuefeng Wang, and David Nolte  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 3, pp. 983-997 (2010)
http://dx.doi.org/10.1364/BOE.1.000983


View Full Text Article

Enhanced HTML    Acrobat PDF (6796 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Mass transport of analyte to surface-immobilized affinity reagents is the fundamental bottleneck for sensitive detection in solid-support microarrays and biosensors. Analyte depletion in the volume adjacent to the sensor causes deviation from ideal association, significantly slows down reaction kinetics, and causes inhomogeneous binding across the sensor surface. In this paper we use high-resolution molecular interferometric imaging (MI2), a label-free optical interferometry technique for direct detection of molecular films, to study the inhomogeneous distribution of intra-spot binding across 100 micron-diameter protein spots. By measuring intra-spot binding inhomogeneity, reaction kinetics can be determined accurately when combined with a numerical three-dimensional finite element model. To ensure homogeneous binding across a spot, a critical flow rate is identified in terms of the association rate ka and the spot diameter. The binding inhomogeneity across a spot can be used to distinguish high-affinity low-concentration specific reactions from low-affinity high-concentration non-specific binding of background proteins.

© 2010 OSA

ToC Category:
Biosensors and Molecular Diagnostics

History
Original Manuscript: August 2, 2010
Revised Manuscript: September 16, 2010
Manuscript Accepted: September 17, 2010
Published: September 20, 2010

Citation
Ming Zhao, Xuefeng Wang, and David Nolte, "Mass-transport limitations in spot-based microarrays," Biomed. Opt. Express 1, 983-997 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-3-983


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. F. Kingsmore, “Multiplexed protein measurement: technologies and applications of protein and antibody arrays,” Nat. Rev. Drug Discov. 5(4), 310–321 (2006). [CrossRef] [PubMed]
  2. G. MacBeath, “Protein microarrays and proteomics,” Nat. Genet. 32(Suppl), 526–532 (2002). [CrossRef] [PubMed]
  3. L. L. Lv and B. C. Liu, “High-throughput antibody microarrays for quantitative proteomic analysis,” Expert Rev. Proteomics 4(4), 505–513 (2007). [CrossRef] [PubMed]
  4. H. Zhu and M. Snyder, “Protein chip technology,” Curr. Opin. Chem. Biol. 7(1), 55–63 (2003). [CrossRef] [PubMed]
  5. M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov. 1(7), 515–528 (2002). [CrossRef] [PubMed]
  6. N. Ramachandran, S. Srivastava, and J. LaBaer, “Applications of protein microarrays for biomarker discovery,” Proteom. Clin. Appl. 2(10–11), 1444–1459 (2008). [CrossRef]
  7. A. Brecht and G. Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron. 10(9-10), 923–936 (1995). [CrossRef] [PubMed]
  8. G. Gauglitz, “Direct optical sensors: principles and selected applications,” Anal. Bioanal. Chem. 381(1), 141–155 (2005). [CrossRef] [PubMed]
  9. X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  10. D. D. Nolte, “Invited Review Article: Review of centrifugal microfluidic and bio-optical disks,” Rev. Sci. Instrum. 80(10), 101101 (2009). [CrossRef] [PubMed]
  11. E. Özkumur, A. Yalçin, M. Cretich, C. A. Lopez, D. A. Bergstein, B. B. Goldberg, M. Chiari, and M. S. Unlü, “Quantification of DNA and protein adsorption by optical phase shift,” Biosens. Bioelectron. 25(1), 167–172 (2009). [CrossRef] [PubMed]
  12. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  13. A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006). [CrossRef]
  14. G. Shekhawat, S. H. Tark, and V. P. Dravid, “MOSFET-Embedded microcantilevers for measuring deflection in biomolecular sensors,” Science 311(5767), 1592–1595 (2006). [CrossRef] [PubMed]
  15. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006). [CrossRef] [PubMed]
  16. S. L. Seurynck-Servoss, A. M. White, C. L. Baird, K. D. Rodland, and R. C. Zangar, “Evaluation of surface chemistries for antibody microarrays,” Anal. Biochem. 371(1), 105–115 (2007). [CrossRef] [PubMed]
  17. W. Kusnezow and J. D. Hoheisel, “Solid supports for microarray immunoassays,” J. Mol. Recognit. 16(4), 165–176 (2003). [CrossRef] [PubMed]
  18. U. B. Nielsen and B. H. Geierstanger, “Multiplexed sandwich assays in microarray format,” J. Immunol. Methods 290(1-2), 107–120 (2004). [CrossRef] [PubMed]
  19. B. B. Haab, “Antibody arrays in cancer research,” Mol. Cell. Proteomics 4(4), 377–383 (2005). [CrossRef] [PubMed]
  20. P. Angenendt, “Progress in protein and antibody microarray technology,” Drug Discov. Today 10(7), 503–511 (2005). [CrossRef] [PubMed]
  21. P. R. Nair and M. A. Alam, “Theory of “Selectivity” of label-free nanobiosensors: A geometro-physical perspective,” J. Appl. Phys. 107(6), 064701 (2010). [CrossRef] [PubMed]
  22. R. P. Ekins, “Ligand assays: from electrophoresis to miniaturized microarrays,” Clin. Chem. 44(9), 2015–2030 (1998). [PubMed]
  23. P. R. Nair and M. A. Alam, “Performance limits of nanobiosensors,” Appl. Phys. Lett. 88(23), 233120 (2006). [CrossRef]
  24. W. Kusnezow, Y. V. Syagailo, S. Rüffer, N. Baudenstiel, C. Gauer, J. D. Hoheisel, D. Wild, and I. Goychuk, “Optimal design of microarray immunoassays to compensate for kinetic limitations: theory and experiment,” Mol. Cell. Proteomics 5(9), 1681–1696 (2006). [CrossRef] [PubMed]
  25. P. Schuck and A. P. Minton, “Analysis of mass transport-limited binding kinetics in evanescent wave biosensors,” Anal. Biochem. 240(2), 262–272 (1996). [CrossRef] [PubMed]
  26. P. Schuck, “Kinetics of ligand binding to receptor immobilized in a polymer matrix, as detected with an evanescent wave biosensor. I. A computer simulation of the influence of mass transport,” Biophys. J. 70(3), 1230–1249 (1996). [CrossRef] [PubMed]
  27. P. E. Sheehan and L. J. Whitman, “Detection limits for nanoscale biosensors,” Nano Lett. 5(4), 803–807 (2005). [CrossRef] [PubMed]
  28. W. Kusnezow, Y. V. Syagailo, I. Goychuk, J. D. Hoheisel, and D. G. Wild, “Antibody microarrays: the crucial impact of mass transport on assay kinetics and sensitivity,” Expert Rev. Mol. Diagn. 6(1), 111–124 (2006). [CrossRef] [PubMed]
  29. W. Kusnezow, Y. V. Syagailo, S. Rüffer, K. Klenin, W. Sebald, J. D. Hoheisel, C. Gauer, and I. Goychuk, “Kinetics of antigen binding to antibody microspots: strong limitation by mass transport to the surface,” Proteomics 6(3), 794–803 (2006). [CrossRef] [PubMed]
  30. G. Q. Hu, Y. L. Gao, and D. Q. Li, “Modeling micropatterned antigen-antibody binding kinetics in a microfluidic chip,” Biosens. Bioelectron. 22(7), 1403–1409 (2007). [CrossRef] [PubMed]
  31. X. F. Wang, M. Zhao, and D. D. Nolte, “Area-scaling of interferometric and fluorescent detection of protein on antibody microarrays,” Biosens. Bioelectron. 24(4), 981–993 (2008). [CrossRef] [PubMed]
  32. M. Zhao, X. F. Wang, G. M. Lawrence, P. Espinoza, and D. D. Nolte, “Molecular interferometric imaging for biosensor applications,” IEEE J. Sel. Top. Quantum Electron. 13(6), 1680–1690 (2007). [CrossRef]
  33. M. Zhao, X. F. Wang, and D. D. Nolte, “Molecular interferometric imaging,” Opt. Express 16(10), 7102–7118 (2008). [CrossRef] [PubMed]
  34. X. F. Wang, M. Zhao, and D. D. Nolte, “Common-path interferometric detection of protein monolayer on the BioCD,” Appl. Opt. 46(32), 7836–7849 (2007). [CrossRef] [PubMed]
  35. M. Zhao, D. D. Nolte, W. R. Cho, F. Regnier, M. Varma, G. Lawrence, and J. Pasqua, “High-speed interferometric detection of label-free immunoassays on the biological compact disc,” Clin. Chem. 52(11), 2135–2140 (2006). [CrossRef] [PubMed]
  36. M. Eliasson, A. Olsson, E. Palmcrantz, K. Wiberg, M. Inganäs, B. Guss, M. Lindberg, and M. Uhlén, “Chimeric IgG-binding receptors engineered from staphylococcal protein A and streptococcal protein G,” J. Biol. Chem. 263(9), 4323–4327 (1988). [PubMed]
  37. K. P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A porous silicon optical biosensor: Detection of reversible binding of IgG to a protein A-modified surface,” J. Am. Chem. Soc. 121(34), 7925–7930 (1999). [CrossRef]
  38. O. C. Zienkiewicz, and R. L. Taylor, The Finite Element Method, 5th edition (Butterworth-Heinemann, 2000).
  39. T. Jøssang, J. Feder, and E. Rosenqvist, “Photon correlation spectroscopy of human IgG,” J. Protein Chem. 7(2), 165–171 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (8913 KB)      QuickTime
» Media 2: AVI (8391 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited