OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 4 — Nov. 1, 2010
  • pp: 1060–1074

Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography

Cheng-Kuang Lee, Hung-Yu Tseng, Chia-Yun Lee, Shou-Yen Wu, Ting-Ta Chi, Kai-Min Yang, Han-Yi Elizabeth Chou, Meng-Tsan Tsai, Jyh-Yang Wang, Yean-Woei Kiang, Chun-Pin Chiang, and C. C. Yang  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 4, pp. 1060-1074 (2010)
http://dx.doi.org/10.1364/BOE.1.001060


View Full Text Article

Enhanced HTML    Acrobat PDF (2225 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The characterization results of the localized surface plasmon resonance (LSPR) of Au nanorings (NRs) with optical coherence tomography (OCT) are first demonstrated. Then, the diffusion behaviors of Au NRs in mouse liver samples tracked with OCT are shown. For such research, aqueous solutions of Au NRs with two different localized surface plasmon resonance (LSPR) wavelengths are prepared and characterized. Their LSPR-induced extinction cross sections at 1310 nm are estimated with OCT scanning of solution droplets on coverslip to show reasonably consistent results with the data at individual LSPR wavelengths and at 1310 nm obtained from transmission measurements of Au NR solutions and numerical simulations. The resonant and non-resonant Au NRs are delivered into mouse liver samples for tracking Au NR diffusion in the samples through continuous OCT scanning for one hour. With resonant Au NRs, the average A-mode scan profiles of OCT scanning at different delay times clearly demonstrate the extension of strong backscattering depth with time. The calculation of speckle variance among successive OCT scanning images, which is related to the local transport speed of Au NRs, leads to the illustrations of downward propagation and spreading of major Au NR motion spot with time.

© 2010 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Nanotechnology and Plasmonics

History
Original Manuscript: September 9, 2010
Revised Manuscript: September 28, 2010
Manuscript Accepted: September 29, 2010
Published: October 1, 2010

Virtual Issues
October 18, 2010 Spotlight on Optics

Citation
Cheng-Kuang Lee, Hung-Yu Tseng, Chia-Yun Lee, Shou-Yen Wu, Ting-Ta Chi, Kai-Min Yang, Han-Yi Elizabeth Chou, Meng-Tsan Tsai, Jyh-Yang Wang, Yean-Woei Kiang, Chun-Pin Chiang, and C. C. Yang, "Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography," Biomed. Opt. Express 1, 1060-1074 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-4-1060


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-7-4376 . [CrossRef] [PubMed]
  2. C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett. 35(5), 700–702 (2010). [CrossRef] [PubMed]
  3. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008). [CrossRef] [PubMed]
  4. C. S. Kim, P. Wilder-Smith, Y. C. Ahn, L. H. L. Liaw, Z. Chen, and Y. J. Kwon, “Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles,” J. Biomed. Opt. 14(3), 034008 (2009). [CrossRef] [PubMed]
  5. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005). [CrossRef] [PubMed]
  6. H. Cang, T. Sun, Z. Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30(22), 3048–3050 (2005). [CrossRef] [PubMed]
  7. E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol. 53(18), 4995–5009 (2008). [CrossRef] [PubMed]
  8. M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14(2), 021017 (2009). [CrossRef] [PubMed]
  9. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007). [CrossRef] [PubMed]
  10. A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-15-6724 . [CrossRef] [PubMed]
  11. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004). [CrossRef] [PubMed]
  12. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005). [CrossRef] [PubMed]
  13. B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006). [CrossRef]
  14. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239(1), 129–135 (2006). [CrossRef] [PubMed]
  15. V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006). [CrossRef] [PubMed]
  16. X. Ji, R. Shao, A. M. Elliott, R. J. Stafford, E. Esparza-Coss, J. A. Bankson, G. Liang, Z.-P. Luo, K. Park, J. T. Markert, and C. Li, “Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy,” Nano Lett. 111(17), 6245–6251 (2007). [CrossRef] [PubMed]
  17. F. Gu, R. Karnik, A. Wang, F. Alexis, E. Levynissenbaum, S. Hong, R. Langer, and O. Farokhzad, “Targeted nanoparticles for cancer therapy,” Nano Today 2(3), 14–21 (2007). [CrossRef]
  18. S. J. Son, X. Bai, and S. B. Lee, “Inorganic hollow nanoparticles and nanotubes in nanomedicine Part 2: Imaging, diagnostic, and therapeutic applications,” Drug Discov. Today 12(15-16), 657–663 (2007). [CrossRef] [PubMed]
  19. L. Au, D. Zheng, F. Zhou, Z. Y. Li, X. Li, and Y. Xia, “A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells,” ACS Nano 2(8), 1645–1652 (2008). [CrossRef] [PubMed]
  20. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008). [CrossRef] [PubMed]
  21. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” nano today 2, 18–29 (2008).
  22. E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008). [CrossRef] [PubMed]
  23. J. L. Li, L. Wang, X. Y. Liu, Z. P. Zhang, H. C. Guo, W. M. Liu, and S. H. Tang, “In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles,” Cancer Lett. 274(2), 319–326 (2009). [CrossRef] [PubMed]
  24. P. Cherukuri, E. S. Glazer, and S. A. Curley, “Targeted hyperthermia using metal nanoparticles,” Adv. Drug Deliv. Rev. 62(3), 339–345 (2010). [CrossRef] [PubMed]
  25. X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Advert. Res. 1(1), 13–28 (2010). [CrossRef]
  26. T. Yamada, Y. Iwasaki, H. Tada, H. Iwabuki, M. K. Chuah, T. VandenDriessche, H. Fukuda, A. Kondo, M. Ueda, M. Seno, K. Tanizawa, and S. Kuroda, “Nanoparticles for the delivery of genes and drugs to human hepatocytes,” Nat. Biotechnol. 21(8), 885–890 (2003). [CrossRef] [PubMed]
  27. P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008). [CrossRef] [PubMed]
  28. A. H. Faraji and P. Wipf, “Nanoparticles in cellular drug delivery,” Bioorg. Med. Chem. 17(8), 2950–2962 (2009). [CrossRef] [PubMed]
  29. D. Pissuwan, T. Niidome, and M. B. Cortie, “The forthcoming applications of gold nanoparticles in drug and gene delivery systems,” Journal of Controlled Release Available online 11 December 2009.
  30. A. G. Tkachenko, H. Xie, Y. Liu, D. Coleman, J. Ryan, W. R. Glomm, M. K. Shipton, S. Franzen, and D. L. Feldheim, “Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains,” Bioconjug. Chem. 15(3), 482–490 (2004). [CrossRef] [PubMed]
  31. P. H. Yang, X. Sun, J. F. Chiu, H. Sun, and Q. Y. He, “Transferrin-mediated gold nanoparticle cellular uptake,” Bioconjug. Chem. 16(3), 494–496 (2005). [CrossRef] [PubMed]
  32. J. A. Ryan, K. W. Overton, M. E. Speight, C. N. Oldenburg, L. N. Loo, W. Robarge, S. Franzen, and D. L. Feldheim, “Cellular uptake of gold nanoparticles passivated with BSA-SV40 large T antigen conjugates,” Anal. Chem. 79(23), 9150–9159 (2007). [CrossRef] [PubMed]
  33. B. D. Chithrani and W. C. W. Chan, “Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes,” Nano Lett. 7(6), 1542–1550 (2007). [CrossRef] [PubMed]
  34. T. S. Hauck, A. A. Ghazani, and W. C. W. Chan, “Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells,” Small 4(1), 153–159 (2008). [CrossRef] [PubMed]
  35. J. L. Li, L. Wang, X. Y. Liu, Z. P. Zhang, H. C. Guo, W. M. Liu, and S. H. Tang, “In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles,” Cancer Lett. 274(2), 319–326 (2009). [CrossRef] [PubMed]
  36. X. H. N. Xu, J. Chen, R. B. Jeffers, and S. V. Kyriacou, “Direct Measurement of Sizes and Dynamics of Single Living Membrane Transporters Using Nano-Optics,” Nano Lett. 2(3), 175–182 (2002). [CrossRef]
  37. J. P. Richard, K. Melikov, E. Vives, C. Ramos, B. Verbeure, M. J. Gait, L. V. Chernomordik, and B. Lebleu, “Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake,” J. Biol. Chem. 278(1), 585–590 (2002). [CrossRef] [PubMed]
  38. X. H. N. Xu, W. J. Brownlow, S. V. Kyriacou, Q. Wan, and J. J. Viola, “Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging,” Biochemistry 43(32), 10400–10413 (2004). [CrossRef] [PubMed]
  39. B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6(4), 662–668 (2006). [CrossRef] [PubMed]
  40. D. A. Giljohann, D. S. Seferos, P. C. Patel, J. E. Millstone, N. L. Rosi, and C. A. Mirkin, “Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles,” Nano Lett. 7(12), 3818–3821 (2007). [CrossRef] [PubMed]
  41. K. J. Lee, P. D. Nallathamby, L. M. Browning, C. J. Osgood, and X. H. N. Xu, “In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos,” ACS Nano 1(2), 133–143 (2007). [CrossRef] [PubMed]
  42. T. B. Huff, M. N. Hansen, Y. Zhao, J. X. Cheng, and A. Wei, “Controlling the cellular uptake of gold nanorods,” Langmuir 23(4), 1596–1599 (2007). [CrossRef] [PubMed]
  43. Z. J. Zhu, P. S. Ghosh, O. R. Miranda, R. W. Vachet, and V. M. Rotello, “Multiplexed screening of cellular uptake of gold nanoparticles using laser desorption/ionization mass spectrometry,” J. Am. Chem. Soc. 130(43), 14139–14143 (2008). [CrossRef] [PubMed]
  44. D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine 6(1), 161–169 (2010). [PubMed]
  45. M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004). [CrossRef] [PubMed]
  46. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004). [PubMed]
  47. A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, “Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells,” J. Biomed. Opt. 10(6), 064035 (2005). [CrossRef] [PubMed]
  48. T. S. Troutman, J. K. Barton, and M. Romanowski, “Biodegradable Plasmon Resonant Nanoshells,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2604–2608 (2008). [CrossRef]
  49. J. Gao, C. M. Bender, and C. J. Murphy, “Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution,” Langmuir 19(21), 9065–9070 (2003). [CrossRef]
  50. J. Pérez-Juste, L. M. Liz-Marza’n, S. Carnie, D. Y. C. Chan, and P. Mulvaney, “Electric Field Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions,” Adv. Funct. Mater. 14(6), 571–579 (2004). [CrossRef]
  51. C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005). [CrossRef] [PubMed]
  52. T. S. Troutman, J. K. Barton, and M. Romanowski, “Optical coherence tomography with plasmon resonant nanorods of gold,” Opt. Lett. 32(11), 1438–1440 (2007). [CrossRef] [PubMed]
  53. J. Chen, B. Wiley, Z. Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold Nanocages: Engineering Their Structure for Biomedical Applications,” Adv. Mater. (Deerfield Beach Fla.) 17(18), 2255–2261 (2005). [CrossRef]
  54. J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007). [CrossRef] [PubMed]
  55. E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small 1(3), 325–327 (2005). [CrossRef] [PubMed]
  56. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998). [CrossRef]
  57. V. Sharma, K. Park, and M. Srinivasarao, “Shape separation of gold nanorods using centrifugation,” Proc. Natl. Acad. Sci. U.S.A. 106(13), 4981–4985 (2009). [CrossRef] [PubMed]
  58. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003). [CrossRef] [PubMed]
  59. E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007). [CrossRef] [PubMed]
  60. F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding Light on Dark Plasmons in Gold Nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008). [CrossRef]
  61. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef]
  62. M. A. Sirotkina, M. V. Shirmanova, M. L. Bugrova, V. V. Elagin, P. A. Agrba, M. Yu. Kirillin, V. A. Kamensky, and E. V. Zagaynova, “Continuous optical coherence tomography monitoring of nanoparticles accumulation in biological tissues,” J. Nanopart. Res. (2010). http://www.springerlink.com/content/f038744m089132jq/
  63. C. C. Yang, M.-T. Tsai, H.-C. Lee, C.-K. Lee, C.-H. Yu, H.-M. Chen, C.-P. Chiang, C.-C. Chang, Y.-M. Wang, and C. C. Yang, “Effective indicators for diagnosis of oral cancer using optical coherence tomography,” Opt. Express 16(20), 15847–15862 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-20-15847 . [CrossRef] [PubMed]
  64. M. T. Tsai, C. K. Lee, H. C. Lee, H. M. Chen, C. P. Chiang, Y. M. Wang, and C. C. Yang, “Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography,” J. Biomed. Opt. 14(4), 044028 (2009). [CrossRef] [PubMed]
  65. C. K. Lee, M. T. Tsai, H. C. Lee, H. M. Chen, C. P. Chiang, Y. M. Wang, and C. C. Yang, “Diagnosis of oral submucous fibrosis with optical coherence tomography,” J. Biomed. Opt. 14(5), 054008 (2009). [CrossRef] [PubMed]
  66. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008). [CrossRef] [PubMed]
  67. A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010). [CrossRef] [PubMed]
  68. H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. Kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. E. Chou, and C. P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010). [CrossRef] [PubMed]
  69. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353–4365 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-19-4353 . [CrossRef] [PubMed]
  70. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (11716 KB)     
» Media 2: MPG (9396 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited