OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 4 — Nov. 1, 2010
  • pp: 1075–1083

Two-photon fluorescence correlation spectroscopy with high count rates and low background using dielectric microspheres

Heykel Aouani, Peter Schön, Sophie Brasselet, Hervé Rigneault, and Jérôme Wenger  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 4, pp. 1075-1083 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1153 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two-photon excitation fluorescence is a powerful technique commonly used for biological imaging. However, the low absorption cross section of this non-linear process is a critical issue for performing biomolecular spectroscopy at the single molecule level. Enhancing the two-photon fluorescence signal would greatly improve the effectiveness of this technique, yet current methods struggle with medium enhancement factors and/or high background noise. Here, we show that the two-photon fluorescence signal from single Alexa Fluor 488 molecules can be enhanced up to 10 times by using a 3 µm diameter latex sphere while adding almost no photoluminescence background. We report a full characterization of the two-photon fluorescence enhancement by a single microsphere using fluorescence correlation spectroscopy. This opens new routes to enhance non-linear optical signals and extend biophotonic applications.

© 2010 OSA

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(230.3990) Optical devices : Micro-optical devices
(290.4020) Scattering : Mie theory
(300.6410) Spectroscopy : Spectroscopy, multiphoton

ToC Category:
Optical Biophysics

Original Manuscript: July 12, 2010
Revised Manuscript: September 6, 2010
Manuscript Accepted: September 29, 2010
Published: October 5, 2010

Heykel Aouani, Peter Schön, Sophie Brasselet, Hervé Rigneault, and Jérôme Wenger, "Two-photon fluorescence correlation spectroscopy with high count rates and low background using dielectric microspheres," Biomed. Opt. Express 1, 1075-1083 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
  2. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 02, 399–429 (2000).
  3. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
  4. K. M. Berland, P. T. C. So, and E. Gratton, “Two-Photon Fluorescence Correlation Spectroscopy: Method and Application to the Intracellular Environment,” Biophys. J. 68, 694–701 (1995).
  5. L. Brand, C. Eggeling, C. Zander, K. H. Drexhage, and C. A. M. Seidel, “Single-Molecule Identification of Coumarin-120 by Time-Resolved Fluorescence Detection: Comparison of One- and Two-Photon Excitation in Solution,” J. Phys. Chem. A 101, 4313–4321 (1997).
  6. P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77, 2251–2265 (1999).
  7. K. G. Heinze, A. Koltermann, and P. Schwille, “Simultaneous two-photon excitation of distinct labels for dualcolor fluorescence crosscorrelation analysis,” Proc. Natl. Acad. Sci. USA 97, 10377–10382 (2000).
  8. S. A. Kim, K. G. Heinze, K. Bacia, M. N. Waxham, and P. Schwille, “Two-Photon Cross-Correlation Analysis of Intracellular Reactions with Variable Stoichiometry,” Biophys. J. 88, 4319–4336 (2005).
  9. W. W. Webb, “Fluorescence correlation spectroscopy: inception, biophysical experimentations, and prospectus,” Appl. Opt. 40, 3969–3983 (2001).
  10. C. Zander, J. Enderlein, and R. A. Keller, Single-Molecule Detection in Solution - Methods and Applications, (VCH-Wiley, Berlin/New York, 2002).
  11. R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22, 169–175 (1994).
  12. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. USA 93, 10763–10768 (1996).
  13. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13, 481–491 (1996).
  14. J. Mertz, C. Xu, and W. W. Webb, “Single-molecule detection by two-photon-excited fluorescence,” Opt. Lett. 20, 2532–2534 (1995).
  15. E. J. Sanchez, L. Novotny, G. R. Holtom, and X. S. Xie, “Room-Temperature Fluorescence Imaging and Spectroscopy of Single Molecules by Two-Photon Excitation,” J. Phys. Chem. A 101, 7019–7023 (1997).
  16. J. Wenger, D. Gérard, H. Aouani, H. Rigneault, B. Lowder, S. Blair, E. Devaux, and T. W. Ebbesen, “Nanoaperture-Enhanced Signal-to-Noise Ratio in Fluorescence Correlation Spectroscopy,” Anal. Chem. 81, 834–839 (2009).
  17. E. J. Sanchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
  18. E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D: Appl. Phys. 41, 013001 (2008).
  19. C. Lin, K. Chiu, C. Chang, S. Chang, T. Guo, and S. Chen, “Surface plasmon-enhanced and quenched two-photon excited fluorescence,” Opt. Express 18, 12807–12817 (2010).
  20. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
  21. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004).
  22. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13, 526–533 (2005).
  23. P. Ferrand, J. Wenger, M. Pianta, H. Rigneault, A. Devilez, B. Stout, N. Bonod, and E. Popov, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930–6940 (2008).
  24. A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
  25. J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem. 80, 6800–6804 (2008).
  26. S. Lecler, S. Haacke, N. Lecong, O. Crégut, J.-L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15, 4935–4942 (2007).
  27. A. Devilez, N. Bonod, B. Stout, D. Gérard, J. Wenger, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of photonic nanojets,” Opt. Express 17, 2089–2094 (2009).
  28. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297–15303 (2008).
  29. J. Wenger, D. Gérard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008).
  30. D. Gérard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B 26, 1473–1478 (2009).
  31. J. Wenger and H. Rigneault, “Photonic Methods to Enhance Fluorescence Correlation Spectroscopy and Single Molecule Fluorescence Detection,” Int. J. Mol. Sci. 11, 206–221 (2010).
  32. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations,” Science 299, 682–686 (2003).
  33. H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express 17, 19085–19092 (2009).
  34. Y.-C. Chang, J. Y. Ye, T. Thomas, Y. Chen, J. R. Baker, and T. B. Norris, “Two-photon fluorescence correlation spectroscopy through dual-clad optical fiber,” Opt. Express 16, 12640–12649 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited