OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 4 — Nov. 1, 2010
  • pp: 1084–1103

Hierarchical Bayesian regularization of reconstructions for diffuse optical tomography using multiple priors

Farras Abdelnour, Christopher Genovese, and Theodore Huppert  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 4, pp. 1084-1103 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1378 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Diffuse optical tomography (DOT) is a non-invasive brain imaging technique that uses low-levels of near-infrared light to measure optical absorption changes due to regional blood flow and blood oxygen saturation in the brain. By arranging light sources and detectors in a grid over the surface of the scalp, DOT studies attempt to spatially localize changes in oxy- and deoxy-hemoglobin in the brain that result from evoked brain activity during functional experiments. However, the reconstruction of accurate spatial images of hemoglobin changes from DOT data is an ill-posed linearized inverse problem, which requires model regularization to yield appropriate solutions. In this work, we describe and demonstrate the application of a parametric restricted maximum likelihood method (ReML) to incorporate multiple statistical priors into the recovery of optical images. This work is based on similar methods that have been applied to the inverse problem for magnetoencephalography (MEG). Herein, we discuss the adaptation of this model to DOT and demonstrate that this approach provides a means to objectively incorporate reconstruction constraints and demonstrate this approach through a series of simulated numerical examples.

© 2010 OSA

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Image Reconstruction and Inverse Problems

Original Manuscript: August 19, 2010
Revised Manuscript: October 2, 2010
Manuscript Accepted: October 2, 2010
Published: October 6, 2010

Farras Abdelnour, Christopher Genovese, and Theodore Huppert, "Hierarchical Bayesian regularization of reconstructions for diffuse optical tomography using multiple priors," Biomed. Opt. Express 1, 1084-1103 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004). [CrossRef] [PubMed]
  2. T. J. Huppert, M. S. Allen, S. G. Diamond, and D. A. Boas, “Estimating cerebral oxygen metabolism from fMRI with a dynamic multicompartment Windkessel model,” Hum. Brain Mapp. 30(5), 1548–1567 (2009) (PMCID: 2670946.). [CrossRef] [PubMed]
  3. T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, “Using near-infrared spectroscopy to assess neural activation during object processing in infants,” J. Biomed. Opt. 10(1), 011010 (2005). [CrossRef] [PubMed]
  4. S. Perrey, “Non-invasive NIR spectroscopy of human brain function during exercise,” Methods 45(4), 289–299 (2008). [CrossRef] [PubMed]
  5. I. Miyai, H. C. Tanabe, I. Sase, H. Eda, I. Oda, I. Konishi, Y. Tsunazawa, T. Suzuki, T. Yanagida, and K. Kubota, “Cortical mapping of gait in humans: a near-infrared spectroscopic topography study,” Neuroimage 14(5), 1186–1192 (2001). [CrossRef] [PubMed]
  6. U. Sunar, S. Makonnen, C. Zhou, T. Durduran, G. Yu, H. W. Wang, W. M. Lee, and A. G. Yodh, “Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies,” Opt. Express 15(23), 15507–15516 (2007). [CrossRef] [PubMed]
  7. U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt. 11(6), 064021 (2006). [CrossRef] [PubMed]
  8. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), 14–93 (1999). [CrossRef]
  9. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005). [CrossRef] [PubMed]
  10. J. Mattout, C. Phillips, W. D. Penny, M. D. Rugg, and K. J. Friston, “MEG source localization under multiple constraints: an extended Bayesian framework,” Neuroimage 30(3), 753–767 (2006). [CrossRef] [PubMed]
  11. K. J. Friston, Statistical parametric mapping: the analysis of functional brain images. 2007, London: Academic. vii, 647.
  12. R. W. Cox, “AFNI: software for analysis and visualization of functional magnetic resonance neuroimages,” Comput. Biomed. Res. 29(3), 162–173 (1996). [CrossRef] [PubMed]
  13. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29(3), 256–258 (2004). [CrossRef] [PubMed]
  14. D. Harville, “Maximum likelihood approaches to variance component estimation and related problems,” J. Am. Stat. Assoc. 72(358), 320–338 (1977). [CrossRef]
  15. K. J. Friston, W. Penny, C. Phillips, S. Kiebel, G. Hinton, and J. Ashburner, “Classical and Bayesian inference in neuroimaging: theory,” Neuroimage 16(2), 465–483 (2002). [CrossRef] [PubMed]
  16. K. J. Friston, D. E. Glaser, R. N. Henson, S. Kiebel, C. Phillips, and J. Ashburner, “Classical and Bayesian inference in neuroimaging: applications,” Neuroimage 16(2), 484–512 (2002). [CrossRef] [PubMed]
  17. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. R. Stat. Soc., B 39(1), 1–38 (1977).
  18. D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging,” Appl. Opt. 45(31), 8142–8151 (2006). [CrossRef] [PubMed]
  19. F. Abdelnour, B. Schmidt, and T. J. Huppert, “Topographic localization of brain activation in diffuse optical imaging using spherical wavelets,” Phys. Med. Biol. 54(20), 6383–6413 (2009) (PMCID: 2806654.). [CrossRef] [PubMed]
  20. I. Daubechies, Ten Lectures On Wavelets. SIAM, 1992.
  21. T. J. Huppert, S. G. Diamond, and D. A. Boas, “Direct estimation of evoked hemoglobin changes by multimodality fusion imaging,” J. Biomed. Opt. 13(5), 054031 (2008). [CrossRef] [PubMed]
  22. D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,” Appl. Opt. 44(10), 1957–1968 (2005). [CrossRef] [PubMed]
  23. B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J. Biomed. Opt. 11(3), 033001 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited