OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 4 — Nov. 1, 2010
  • pp: 1104–1116

Non-invasive optical interferometry for the assessment of biofilm growth in the middle ear

Cac T. Nguyen, Haohua Tu, Eric J. Chaney, Charles N. Stewart, and Stephen A. Boppart  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 4, pp. 1104-1116 (2010)
http://dx.doi.org/10.1364/BOE.1.001104


View Full Text Article

Enhanced HTML    Acrobat PDF (2131 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Otitis media (OM) is the most common illness in children in the United States. Three-fourths of children under the age of three have OM at least once. Children with chronic OM, including OM with effusion and recurrent OM, will often have conductive hearing loss and communication difficulties, and need surgical treatment. Recent clinical studies provide evidence that almost all chronic OM cases are accompanied by a bacterial biofilm behind the tympanic membrane (eardrum) and within the middle ear. Biofilms are typically very thin, and cannot be recognized using a regular otoscope. Here we demonstrate how optical low coherence interferometry (LCI) noninvasively depth-ranges into the middle ear to detect and quantify biofilm microstructure. A portable diagnostic system integrating LCI with a standard video otoscope was constructed and used to detect and quantify the presence of biofilms in a newly-developed pre-clinical animal model for this condition. Using a novel classification algorithm for acquired LCI data, the system identified the presence of a biofilm with 86% sensitivity and 90% specificity, compared to histological findings. This new information on the presence of a biofilm, its structure, and its response to antibiotic treatment, will not only provide better understanding of fundamental principles that govern biofilm formation, growth, and eradication, but may also provide much needed clinical data to direct and monitor protocols for the successful management of otitis media.

© 2010 OSA

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4940) Medical optics and biotechnology : Otolaryngology

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: August 4, 2010
Revised Manuscript: October 4, 2010
Manuscript Accepted: October 4, 2010
Published: October 7, 2010

Citation
Cac T. Nguyen, Haohua Tu, Eric J. Chaney, Charles N. Stewart, and Stephen A. Boppart, "Non-invasive optical interferometry for the assessment of biofilm growth in the middle ear," Biomed. Opt. Express 1, 1104-1116 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-4-1104


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. O. Klein, “Otitis media,” Clin. Infect. Dis. 19(5), 823–833 (1994). [PubMed]
  2. J. E. Roberts, R. M. Rosenfeld, and S. A. Zeisel, “Otitis media and speech and language: a meta-analysis of prospective studies,” Pediatrics 113(3), e238–e248 (2004). [CrossRef] [PubMed]
  3. S. M. Pransky, “Surgical strategies for otitis media,” J. Otolaryngol. 27(Suppl 2), 37–42 (1998). [PubMed]
  4. J. Froom, L. Culpepper, M. Jacobs, R. A. DeMelker, L. A. Green, L. van Buchem, P. Grob, and T. Heeren, “Antimicrobials for acute otitis media? A review from the International Primary Care Network,” BMJ 315(7100), 98–102 (1997). [PubMed]
  5. P. Shekelle, G. Takata, L. S. Chan, R. Mangione-Smith, P. M. Corley, T. Morphew, and S. Morton, “Diagnosis, natural history, and late effects of otitis media with effusion,” Agency for Healthcare Research and Quality Publication No. 03–E023 (2003).
  6. P. K. Harris, K. M. Hutchinson, and J. Moravec, “The use of tympanometry and pneumatic otoscopy for predicting middle ear disease,” Am. J. Audiol. 14(1), 3–13 (2005). [CrossRef] [PubMed]
  7. L. Hall-Stoodley, F. Z. Hu, A. Gieseke, L. Nistico, D. Nguyen, J. Hayes, M. Forbes, D. P. Greenberg, B. Dice, A. Burrows, P. A. Wackym, P. Stoodley, J. C. Post, G. D. Ehrlich, and J. E. Kerschner, “Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media,” JAMA 296(2), 202–211 (2006). [CrossRef] [PubMed]
  8. J. E. Dohar, P. A. Hebda, R. Veeh, M. Awad, J. W. Costerton, J. Hayes, and G. D. Ehrlich, “Mucosal biofilm formation on middle-ear mucosa in a nonhuman primate model of chronic suppurative otitis media,” Laryngoscope 115(8), 1469–1472 (2005). [CrossRef] [PubMed]
  9. M. Allegrucci, F. Z. Hu, K. Shen, J. Hayes, G. D. Ehrlich, J. C. Post, and K. Sauer, “Phenotypic characterization of Streptococcus pneumoniae biofilm development,” J. Bacteriol. 188(7), 2325–2335 (2006). [CrossRef] [PubMed]
  10. C. Potera, “Forging a link between biofilms and disease,” Science 283(5409), 1837–1839, 1839 (1999). [CrossRef] [PubMed]
  11. J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial biofilms: a common cause of persistent infections,” Science 284(5418), 1318–1322 (1999). [CrossRef] [PubMed]
  12. W. Drexler, and J. Fujimoto, Optical Coherence Tomography: Technology and Applications, (Springer, New York, 2008).
  13. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007). [CrossRef] [PubMed]
  14. C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study,” Arch. Otolaryngol. Head Neck Surg. 127(6), 637–642 (2001). [PubMed]
  15. H. R. Djalilian, J. Ridgway, M. Tam, A. Sepehr, Z. Chen, and B. J. Wong, “Imaging the human tympanic membrane using optical coherence tomography in vivo,” Otol. Neurotol. 29(8), 1091–1094 (2008). [CrossRef] [PubMed]
  16. C. Xi, D. L. Marks, S. Schlachter, W. Luo, and S. A. Boppart, “High-resolution three-dimensional imaging of biofilm development using optical coherence tomography,” J. Biomed. Opt. 11(3), 034001 (2006). [CrossRef] [PubMed]
  17. W. Jung, D. T. McCormick, Y. C. Ahn, A. Sepehr, M. Brenner, B. Wong, N. C. Tien, and Z. Chen, “In vivo three-dimensional spectral domain endoscopic optical coherence tomography using a microelectromechanical system mirror,” Opt. Lett. 32(22), 3239–3241 (2007). [CrossRef] [PubMed]
  18. D. T. McCormick, W. Jung, Y. C. Ahn, V. Milanović, Z. Chen, and N. C. Tien, “A MEMS based optical coherence tomography imaging system and optical biopsy probes for real-time, high resolution in-vivo and in-vitro 2-D or 3-D imaging,” in Proceedings of 2006 IEEE/LEOS International Conference on Optical MEMS and their Applications (August 2006) pp. 2.
  19. A. M. Zysk and S. A. Boppart, “Computational methods for analysis of human breast tumor tissue in optical coherence tomography images,” J. Biomed. Opt. 11(5), 054015 (2006). [CrossRef] [PubMed]
  20. B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, “Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance,” J. Biomed. Opt. 13(1), 014014 (2008). [CrossRef] [PubMed]
  21. E. L. Tonnaer, E. A. Sanders, and J. H. Curfs, “Bacterial otitis media: a new non-invasive rat model,” Vaccine 21(31), 4539–4544 (2003). [CrossRef] [PubMed]
  22. O. B. Piltcher, J. D. Swarts, K. Magnuson, C. M. Alper, W. J. Doyle, and P. A. Hebda, “A rat model of otitis media with effusion caused by eustachian tube obstruction with and without S. pneumoniae infection: Methods and disease course,” Otolaryngol. Head Neck Surg. 126(5), 490–498 (2002). [CrossRef] [PubMed]
  23. M. Hoa, M. Syamal, L. Sachdeva, R. Berk, and J. Coticchia, “Demonstration of nasopharyngeal and middle ear mucosal biofilms in an animal model of acute otitis media,” Ann. Otol. Rhinol. Laryngol. 118(4), 292–298 (2009). [PubMed]
  24. W. Jung, W. Benalcazar, U. Shamar, A. Ahmad, H. Tu, and S. A. Boppart, “Numerical analysis of GRIN lens-based OCT imaging probes,” J. Biomed. Opt. under review.
  25. J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986). [CrossRef]
  26. R. Deriche, “Using Canny's criteria to derive a recursively implemented optimal edge detector,” Int. J. Comput. Vis. 1(2), 167–187 (1987). [CrossRef]
  27. D. J. Lim, “Structure and function of the tympanic membrane: a review,” Acta Otorhinolaryngol. Belg. 49(2), 101–115 (1995). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited