OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 4 — Nov. 1, 2010
  • pp: 1148–1158

A Bayesian method for single molecule, fluorescence burst analysis

P. R. Barber, S. M. Ameer-Beg, S. Pathmananthan, M. Rowley, and A. C. C. Coolen  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 4, pp. 1148-1158 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1086 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



There is currently great interest in determining physical parameters, e.g. fluorescence lifetime, of individual molecules that inform on environmental conditions, whilst avoiding the artefacts of ensemble averaging. Protein interactions, molecular dynamics and sub-species can all be studied. In a burst integrated fluorescence lifetime (BIFL) experiment, identification of fluorescent bursts from single molecules above background detection is a problem. This paper presents a Bayesian method for burst identification based on model selection and demonstrates the detection of bursts consisting of 10% signal amplitude. The method also estimates the fluorescence lifetime (and its error) from the burst data.

© 2010 OSA

OCIS Codes
(000.3860) General : Mathematical methods in physics
(180.0180) Microscopy : Microscopy
(180.1790) Microscopy : Confocal microscopy
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Optical Biophysics

Original Manuscript: July 22, 2010
Manuscript Accepted: April 10, 2010
Published: October 12, 2010

Virtual Issues
November 12, 2010 Spotlight on Optics

P. R. Barber, S. M. Ameer-Beg, S. Pathmananthan, M. Rowley, and A. C. C. Coolen, "A Bayesian method for single molecule, fluorescence burst analysis," Biomed. Opt. Express 1, 1148-1158 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Böhmer and J. Enderlein, “Fluorescence spectroscopy of single molecules under ambient conditions: methodology and technology,” ChemPhysChem 4(8), 792–808 (2003). [CrossRef] [PubMed]
  2. C. Eggeling, J. R. Fries, L. Brand, R. Günther, and C. A. Seidel, “Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 95(4), 1556–1561 (1998). [CrossRef] [PubMed]
  3. J. R. Fries, L. Brand, C. Eggeling, M. Kollner, and C. A. M. Seidel, “Quantitative Identification of Different Single Molecules by Selective Time-Resolved Confocal Fluorescence Spectroscopy,” J. Phys. Chem. A 102(33), 6601–6613 (1998). [CrossRef]
  4. R. Kühnemuth and C. A. M. Seidel, “Principles of Single Molecule Multiparameter Fluorescence Spectroscopy,” Single Mol. 2(4), 251–254 (2001).
  5. W. Becker, A. Bergmann, E. Haustein, Z. Petrasek, P. Schwille, C. Biskup, L. Kelbauskas, K. Benndorf, N. Klöcker, T. Anhut, I. Riemann, and K. König, “Fluorescence lifetime images and correlation spectra obtained by multidimensional time-correlated single photon counting,” Microsc. Res. Tech. 69(3), 186–195 (2006). [CrossRef] [PubMed]
  6. J. Enderlein, D. L. Robbins, W. P. Ambrose, and R. A. Keller, “Molecular Shot Noise, Burst Size Distribution, and Single-Molecule Detection in Fluid Flow: Effects of Multiple Occupancy,” J. Phys. Chem. A 102(30), 6089–6094 (1998). [CrossRef]
  7. W. Grange, P. Haas, A. Wild, M. A. Lieb, M. Calame, M. Hegner, and B. Hecht, “Detection of transient events in the presence of background noise,” J. Phys. Chem. B 112(23), 7140–7144 (2008). [CrossRef] [PubMed]
  8. J. Enderlein, P. M. Goodwin, A. Van Orden, W. Patrick Ambrose, R. Erdmann, and R. A. Keller, “A maximum likelihood estimator to distinguish single molecules by their fluorescence decays,” Chem. Phys. Lett. 270(5-6), 464–470 (1997). [CrossRef]
  9. E. Brooks Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller, and S. A. Soper, “Detection of single fluorescent molecules,” Chem. Phys. Lett. 174(6), 553–557 (1990). [CrossRef]
  10. M. Prummer, C. G. Hubner, B. Sick, B. Hecht, A. Renn, and U. P. Wild, “Single-molecule identification by spectrally and time-resolved fluorescence detection,” Anal. Chem. 72(3), 443–447 (2000). [CrossRef] [PubMed]
  11. M. Prummer, B. Sick, A. Renn, and U. P. Wild, “Multiparameter microscopy and spectroscopy for single-molecule analytics,” Anal. Chem. 76(6), 1633–1640 (2004). [CrossRef] [PubMed]
  12. S. H. Lee, M. Jae, and R. P. Gardner, “Non-Poisson counting statistics of a hybrid G-M counter dead time model,” Nucl. Instrum. Methods Phys. Res. B 263, 46–49 (2007).
  13. T. C. Voss, I. A. Demarco, and R. N. Day, “Quantitative imaging of protein interactions in the cell nucleus,” Biotechniques 38(3), 413–424 (2005). [CrossRef] [PubMed]
  14. H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol. 16(1), 19–27 (2005). [CrossRef] [PubMed]
  15. C. M. Bishop, Neural Networks for Pattern Recognition (Oxford University Press, Oxford, 1995).
  16. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, 1992).
  17. M. Parsons, J. Monypenny, S. M. Ameer-Beg, T. H. Millard, L. M. Machesky, M. Peter, M. D. Keppler, G. Schiavo, R. Watson, J. Chernoff, D. Zicha, B. Vojnovic, and T. Ng, “Spatially distinct binding of Cdc42 to PAK1 and N-WASP in breast carcinoma cells,” Mol. Cell. Biol. 25(5), 1680–1695 (2005). [CrossRef] [PubMed]
  18. M. Peter, S. M. Ameer-Beg, M. K. Y. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J. 88(2), 1224–1237 (2005). [CrossRef] [PubMed]
  19. P. R. Barber, S. M. Ameer-Beg, J. Gilbey, L. M. Carlin, M. Keppler, T. C. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein–protein interactions using global analysis,” J. R. Soc. Interface 6, S93–S105 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited