OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 4 — Nov. 1, 2010
  • pp: 1159–1172

Development of a versatile two-photon endoscope for biological imaging

Youbo Zhao, Hiroshi Nakamura, and Robert J. Gordon  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 4, pp. 1159-1172 (2010)
http://dx.doi.org/10.1364/BOE.1.001159


View Full Text Article

Enhanced HTML    Acrobat PDF (1209 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a versatile, catheter-type two-photon probe, designed for in vivo and ex vivo imaging of the aqueous outflow pathway in the eye. The device consists of a silica double cladding fiber used for laser delivery and fluorescence collection, a spiral fiber scanner driven by a miniature piezoelectric tube, and an assembly of three micro-size doublet achromatic lenses used for focusing the laser and collecting the two-photon excitation signal. All the components have a maximum diameter of 2 mm and are enclosed in a length of 12-gauge stainless steel hypodermic tubing having an outer diameter of 2.8 mm. The lateral and axial resolutions of the probe are measured to be 1.5 μm and 9.2 μm, respectively. Different lens configurations and fibers are evaluated by comparing their spatial resolutions and fluorescence signal collection efficiencies. Doublet achromatic lenses and a double cladding fiber with a high inner cladding numerical aperture are found to produce a high signal collection efficiency, which is essential for imaging live tissues. Simple methods for reducing image distortions are demonstrated. Images of human trabecular meshwork tissue are successfully obtained with this miniature two-photon microscope.

© 2010 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.2350) Imaging systems : Fiber optics imaging
(170.0110) Medical optics and biotechnology : Imaging systems
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(180.5810) Microscopy : Scanning microscopy

ToC Category:
Endoscopes, Catheters and Micro-Optics

History
Original Manuscript: July 23, 2010
Revised Manuscript: September 21, 2010
Manuscript Accepted: October 3, 2010
Published: October 13, 2010

Citation
Youbo Zhao, Hiroshi Nakamura, and Robert J. Gordon, "Development of a versatile two-photon endoscope for biological imaging," Biomed. Opt. Express 1, 1159-1172 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-4-1159


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  3. A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38(2), 97–166 (2005). [CrossRef] [PubMed]
  4. L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microsc. 226(3), 195–206 (2007). [CrossRef] [PubMed]
  5. P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008). [CrossRef] [PubMed]
  6. K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007). [CrossRef] [PubMed]
  7. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001). [CrossRef] [PubMed]
  8. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005). [CrossRef] [PubMed]
  9. W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29(21), 2521–2523 (2004). [CrossRef] [PubMed]
  10. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004). [CrossRef] [PubMed]
  11. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005). [CrossRef] [PubMed]
  12. L. Fu, A. Jain, H. K. Xie, C. Cranfield, and M. Gu, “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror,” Opt. Express 14(3), 1027–1032 (2006). [CrossRef] [PubMed]
  13. M. T. Myaing, D. J. MacDonald, and X. D. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006). [CrossRef] [PubMed]
  14. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008). [CrossRef] [PubMed]
  15. Y. C. Wu, J. F. Xi, M. J. Cobb, and X. D. Li, “Scanning fiber-optic nonlinear endomicroscopy with miniature aspherical compound lens and multimode fiber collector,” Opt. Lett. 34(7), 953–955 (2009). [CrossRef] [PubMed]
  16. D. Bird and M. Gu, “Compact two-photon fluorescence microscope based on a single-mode fiber coupler,” Opt. Lett. 27(12), 1031–1033 (2002). [CrossRef] [PubMed]
  17. Y. C. Wu, Y. X. Leng, J. F. Xi, and X. D. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express 17(10), 7907–7915 (2009). [CrossRef] [PubMed]
  18. L. Fu, X. S. Gan, and M. Gu, “Nonlinear optical microscopy based on double-clad photonic crystal fibers,” Opt. Express 13(14), 5528–5534 (2005). [CrossRef] [PubMed]
  19. L. Fu and M. Gu, “Double-clad photonic crystal fiber coupler for compact nonlinear optical microscopy imaging,” Opt. Lett. 31(10), 1471–1473 (2006). [CrossRef] [PubMed]
  20. R. Le Harzic, I. Riemann, M. Weinigel, K. König, and B. Messerschmidt, “Rigid and high-numerical-aperture two-photon fluorescence endoscope,” Appl. Opt. 48(18), 3396–3400 (2009). [CrossRef] [PubMed]
  21. G. Binnig and D. P. E. Smith, “Single-tube three-dimensional scanner for scanning tunneling microscopy,” Rev. Sci. Instrum. 57(8), 1688–1689 (1986). [CrossRef]
  22. J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28(11), 902–904 (2003). [CrossRef] [PubMed]
  23. D. W. Piston, B. R. Masters, and W. W. Webb, “Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy,” J. Microsc. 178(Pt 1), 20–27 (1995). [PubMed]
  24. M. Johnson, “What controls aqueous humour outflow resistance?” Exp. Eye Res. 82(4), 545–557 (2006). [CrossRef] [PubMed]
  25. E. R. Tamm, “The trabecular meshwork outflow pathways: structural and functional aspects,” Exp. Eye Res. 88(4), 648–655 (2009). [CrossRef] [PubMed]
  26. H. Y. Gong, R. C. Tripathi, and B. J. Tripathi, “Morphology of the aqueous outflow pathway,” Microsc. Res. Tech. 33(4), 336–367 (1996). [CrossRef] [PubMed]
  27. A. J. Sit, F. M. Coloma, C. R. Ethier, and M. Johnson, “Factors affecting the pores of the inner wall endothelium of Schlemm’s canal,” Invest. Ophthalmol. Vis. Sci. 38(8), 1517–1525 (1997). [PubMed]
  28. S. Toyran, Y. M. Liu, S. Singha, S. Shan, M. R. Cho, R. J. Gordon, and D. P. Edward, “Femtosecond laser photodisruption of human trabecular meshwork: an in vitro study,” Exp. Eye Res. 81(3), 298–305 (2005). [PubMed]
  29. H. Nakamura, Y. M. Liu, T. E. Witt, R. J. Gordon, and D. P. Edward, “Femtosecond laser photodisruption of primate trabecular meshwork: an ex vivo study,” Invest. Ophthalmol. Vis. Sci. 50(3), 1198–1204 (2008). [CrossRef] [PubMed]
  30. D. A. Ammar, T. C. Lei, E. A. Gibson, and M. Y. Kahook, “Two-photon imaging of the trabecular meshwork,” Mol. Vis. 16, 935–944 (2010). [PubMed]
  31. D. C. Leiner and R. Prescott, “Correction of chromatic aberrations in GRIN endoscopes,” Appl. Opt. 22(3), 383–386 (1983). [CrossRef] [PubMed]
  32. X. M. Liu, M. J. Cobb, Y. C. Chen, M. B. Kimmey, and X. D. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004). [CrossRef] [PubMed]
  33. M. W. Davidson, and M. Abramowitz, “Optical microscopy,” in Encyclopedia of imaging science and technology, J. P. Hornak, (J. Wiley, New York, 2002).
  34. Y. Sako, A. Sekihata, Y. Yanagisawa, M. Yamamoto, Y. Shimada, K. Ozaki, and A. Kusumi, “Comparison of two-photon excitation laser scanning microscopy with UV-confocal laser scanning microscopy in three-dimensional calcium imaging using the fluorescence indicator Indo-1,” J. Microsc. 185(1), 9–20 (1997). [CrossRef] [PubMed]
  35. M. Gu and D. Bird, “Three-dimensional optical-transfer-function analysis of fiber-optical two-photon fluorescence microscopy,” J. Opt. Soc. Am. A 20(5), 941–947 (2003). [CrossRef] [PubMed]
  36. K. Tanaka, N. Saga, and K. Hauchi, “Focusing of a Gaussian beam through a finite aperture lens,” Appl. Opt. 24(8), 1098–1101 (1985). [CrossRef] [PubMed]
  37. L. Fu, X. S. Gan, and M. Gu, “Characterization of gradient-index lens-fiber spacing toward applications in two-photon fluorescence endoscopy,” Appl. Opt. 44(34), 7270–7274 (2005). [CrossRef] [PubMed]
  38. K. Nishizawa, “Chromatic aberration of the Selfoc lens as an imaging system,” Appl. Opt. 19(7), 1052–1055 (1980). [CrossRef] [PubMed]
  39. M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. J. Russell, “Enhanced two-photon biosensing with double-clad photonic crystal fibers,” Opt. Lett. 28(14), 1224–1226 (2003). [CrossRef] [PubMed]
  40. Y. C. Chang, J. Y. Ye, T. Thomas, Y. Chen, J. R. Baker, and T. B. Norris, “Two-photon fluorescence correlation spectroscopy through a dual-clad optical fiber,” Opt. Express 16(17), 12640–12649 (2008). [PubMed]
  41. F. Helmchen, D. W. Tank, and W. Denk, “Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core,” Appl. Opt. 41(15), 2930–2934 (2002). [CrossRef] [PubMed]
  42. C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001 (2006). [CrossRef]
  43. S. Lemire-Renaud, M. Rivard, M. Strupler, D. Morneau, F. Verpillat, X. Daxhelet, N. Godbout, and C. Boudoux, “Double-clad fiber coupler for endoscopy,” Opt. Express 18(10), 9755–9764 (2010). [CrossRef] [PubMed]
  44. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000). [CrossRef]
  45. P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt. 14(1), 014002 (2009). [CrossRef] [PubMed]
  46. B. von Vacano, T. Buckup, and M. Motzkus, “In situ broadband pulse compression for multiphoton microscopy using a shaper-assisted collinear SPIDER,” Opt. Lett. 31(8), 1154–1156 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited