OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 4 — Nov. 1, 2010
  • pp: 1173–1187

Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia

Rickson C. Mesquita, Nicolas Skuli, Meeri N. Kim, Jiaming Liang, Steve Schenkel, Amar J. Majmundar, M. Celeste Simon, and Arjun G. Yodh  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 4, pp. 1173-1187 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1423 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Murine hindlimb ischemia is a useful model for investigation of the mechanisms of peripheral arterial disease and for understanding the role of endothelial cells and generic factors affecting vascular regeneration or angiogenesis. To date, important research with these models has explored tissue reperfusion following ischemia with Laser Doppler methods, methods which provide information about superficial (~mm) vascular regeneration. In this work, we employ diffuse correlation spectroscopy (DCS) and diffuse optical spectroscopy (DOS) in mice after hindlimb ischemia. We hypothesize that vascular re-growth is not uniform in tissue, and therefore, since diffuse optical methods are capable of probing deep tissues, that the diffuse optics approach will provide a more complete picture of the angiogenesis process throughout the whole depth profile of the limb. Besides increased depth penetration, the combined measurements of DCS and DOS enable all-optical, noninvasive, longitudinal monitoring of tissue perfusion and oxygenation that reveals the interplay between these hemodynamic parameters during angiogenesis. Control mice were found to reestablish 90% of perfusion and oxygen consumption during this period, but oxygen saturation in the limb only partially recovered to about 30% of its initial value. The vascular recovery of mice with endothelial cell-specific deletion of HIF-2α was found to be significantly impaired relative to control mice, indicating that HIF-2α is important for endothelial cell functions in angiogenesis. Comparison of DOS/DCS measurements to parallel measurements in the murine models using Laser Doppler Flowmetry reveal differences in the reperfusion achieved by superficial versus deep tissue during neoangiogenesis; findings from histological analysis of blood vessel development were further correlated with these differences. In general, the combination of DCS and DOS enables experimenters to obtain useful information about oxygenation, metabolism, and perfusion throughout the limb. The results establish diffuse optics as a practical noninvasive method to evaluate the role of transcription factors, such as the endothelial cell-specific HIF-2α, in genetic ally modified mice.

© 2010 OSA

OCIS Codes
(170.1420) Medical optics and biotechnology : Biology
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5380) Medical optics and biotechnology : Physiology

ToC Category:
Cardiovascular Applications

Original Manuscript: August 12, 2010
Revised Manuscript: September 29, 2010
Manuscript Accepted: October 12, 2010
Published: October 15, 2010

Rickson C. Mesquita, Nicolas Skuli, Meeri N. Kim, Jiaming Liang, Steve Schenkel, Amar J. Majmundar, M. Celeste Simon, and Arjun G. Yodh, "Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia," Biomed. Opt. Express 1, 1173-1187 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature 438(7070), 932–936 (2005). [CrossRef] [PubMed]
  2. M. M. Hickey and M. C. Simon, “Regulation of angiogenesis by hypoxia and hypoxia-inducible factors,” Curr. Top. Dev. Biol. 76, 217–257 (2006). [CrossRef] [PubMed]
  3. K. L. Covello and M. C. Simon, “HIFs, hypoxia, and vascular development,” Curr. Top. Dev. Biol. 62, 37–54 (2004). [CrossRef] [PubMed]
  4. B. Zhou, M. C. Poon, W. T. Pu, and Z. C. Han, “Therapeutic neovascularization for peripheral arterial diseases: advances and perspectives,” Histol. Histopathol. 22(6), 677–686 (2007). [PubMed]
  5. J. A. Bertout, S. A. Patel, and M. C. Simon, “The impact of O2 availability on human cancer,” Nat. Rev. Cancer 8(12), 967–975 (2008). [CrossRef] [PubMed]
  6. M. Heil, I. Eitenmüller, T. Schmitz-Rixen, and W. Schaper, “Arteriogenesis versus angiogenesis: similarities and differences,” J. Cell. Mol. Med. 10(1), 45–55 (2006). [CrossRef] [PubMed]
  7. D. Scholz, T. Ziegelhoeffer, A. Helisch, S. Wagner, C. Friedrich, T. Podzuweit, and W. Schaper, “Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice,” J. Mol. Cell. Cardiol. 34(7), 775–787 (2002). [CrossRef] [PubMed]
  8. A. Helisch, S. Wagner, N. Khan, M. Drinane, S. Wolfram, M. Heil, T. Ziegelhoeffer, U. Brandt, J. D. Pearlman, H. M. Swartz, and W. Schaper, “Impact of mouse strain differences in innate hindlimb collateral vasculature,” Arterioscler. Thromb. Vasc. Biol. 26(3), 520–526 (2005). [CrossRef] [PubMed]
  9. T. Couffinhal, M. Silver, L. P. Zheng, M. Kearney, B. Witzenbichler, and J. M. Isner, “Mouse model of angiogenesis,” Am. J. Pathol. 152(6), 1667–1679 (1998). [PubMed]
  10. E. Deindl, I. Buschmann, I. E. Hoefer, T. Podzuweit, K. Boengler, S. Vogel, N. van Royen, B. Fernandez, and W. Schaper, “Role of ischemia and of hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbit,” Circ. Res. 89(9), 779–786 (2001). [CrossRef] [PubMed]
  11. G. L. Wang and G. L. Semenza, “Purification and characterization of hypoxia-inducible factor 1,” J. Biol. Chem. 270(3), 1230–1237 (1995). [CrossRef] [PubMed]
  12. H. Tian, S. L. McKnight, and D. W. Russell, “Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells,” Genes Dev. 11(1), 72–82 (1997). [CrossRef] [PubMed]
  13. I. E. Hoefer, N. van Royen, I. R. Buschmann, J. J. Piek, and W. Schaper, “Time course of arteriogenesis following femoral artery occlusion in the rabbit,” Cardiovasc. Res. 49(3), 609–617 (2001). [CrossRef] [PubMed]
  14. M. Bosch-Marce, H. Okuyama, J. B. Wesley, K. Sarkar, H. Kimura, Y. V. Liu, H. Zhang, M. Strazza, S. Rey, L. Savino, Y. F. Zhou, K. R. McDonald, Y. Na, S. Vandiver, A. Rabi, Y. Shaked, R. Kerbel, T. Lavallee, and G. L. Semenza, “Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia,” Circ. Res. 101(12), 1310–1318 (2007). [CrossRef] [PubMed]
  15. K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002). [CrossRef] [PubMed]
  16. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010). [CrossRef]
  17. M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857–873 (2002). [PubMed]
  18. H.-W. Wang, E. Rickter, M. Yuan, E. P. Wileyto, E. Glatstein, A. Yodh, and T. M. Busch*, “Effect of Photosensitizer Dose on Fluence Rate Responses to Photodynamic Therapy,” Photochem. Photobiol. 83(5), 1040–1048 (2007). [CrossRef] [PubMed]
  19. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75(9), 1855–1858 (1995). [CrossRef] [PubMed]
  20. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14(1), 192–215 (1997). [CrossRef]
  21. G. Q. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI,” Opt. Express 15(3), 1064–1075 (2007). [CrossRef] [PubMed]
  22. T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010). [CrossRef] [PubMed]
  23. M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010). [CrossRef] [PubMed]
  24. C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009). [CrossRef] [PubMed]
  25. N. Skuli, L. Liu, A. Runge, T. Wang, L. Yuan, S. Patel, L. Iruela-Arispe, M. C. Simon, and B. Keith, “Endothelial deletion of hypoxia-inducible factor-2  (HIF-2 ) alters vascular function and tumor angiogenesis,” Blood 114(2), 469–477 (2009). [CrossRef] [PubMed]
  26. V. E. Papaioannou and J. G. Fox, “Efficacy of tribromoethanol anesthesia in mice,” Lab. Anim. Sci. 43(2), 189–192 (1993). [PubMed]
  27. A. Limbourg, T. Korff, L. C. Napp, W. Schaper, H. Drexler, and F. P. Limbourg, “Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia,” Nat. Protoc. 4(12), 1737–1748 (2009). [CrossRef] [PubMed]
  28. S. F. Winter, V. D. Acevedo, R. D. Gangula, K. W. Freeman, D. M. Spencer, and N. M. Greenberg, “Conditional activation of FGFR1 in the prostate epithelium induces angiogenesis with concomitant differential regulation of Ang-1 and Ang-2,” Oncogene 26(34), 4897–4907 (2007). [CrossRef] [PubMed]
  29. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992). [CrossRef] [PubMed]
  30. S. Prahl, Optical properties spectra, http://omlc.ogi.edu/spectra/index.html
  31. S. Takatani and M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26(12), 656–664 (1979). [CrossRef] [PubMed]
  32. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
  33. H. W. Wang, J. C. Finlay, K. Lee, T. C. Zhu, M. E. Putt, E. Glatstein, C. J. Koch, S. M. Evans, S. M. Hahn, T. M. Busch, and A. G. Yodh, “Quantitative comparison of tissue oxygen and motexafin lutetium uptake by ex vivo and noninvasive in vivo techniques in patients with intraperitoneal carcinomatosis,” J. Biomed. Opt. 12(3), 034023 (2007). [CrossRef] [PubMed]
  34. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003). [CrossRef] [PubMed]
  35. J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13(6), 975–987 (2001). [CrossRef] [PubMed]
  36. D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski, R. A. Poldrack, B. R. Rosen, and J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol. 48(15), 2405–2418 (2003). [CrossRef] [PubMed]
  37. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002). [PubMed]
  38. L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Opt. Express 16(20), 15514–15530 (2008). [CrossRef] [PubMed]
  39. P. Carmeliet, “Mechanisms of angiogenesis and arteriogenesis,” Nat. Med. 6(4), 389–395 (2000). [CrossRef] [PubMed]
  40. W. Schaper, “Collateral circulation: past and present,” Basic Res. Cardiol. 104(1), 5–21 (2009). [CrossRef] [PubMed]
  41. L. H. Gray and J. M. Steadman, “Determination of the oxyhaemoglobin dissociation curves for mouse and rat blood,” J. Physiol. 175, 161–171 (1964). [PubMed]
  42. K. Schmidt-Neilsen and J. L. Larimer, “Oxygen dissociation curves of mammalian blood in relation to body size,” Am. J. Physiol. 195(2), 424–428 (1958). [PubMed]
  43. H. W. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, and T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64(20), 7553–7561 (2004). [CrossRef] [PubMed]
  44. A. Matsumoto, S. Matsumoto, A. L. Sowers, J. W. Koscielniak, N. J. Trigg, P. Kuppusamy, J. B. Mitchell, S. Subramanian, M. C. Krishna, and K. I. Matsumoto, “Absolute oxygen tension (pO(2)) in murine fatty and muscle tissue as determined by EPR,” Magn. Reson. Med. 54(6), 1530–1535 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited