OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 4 — Nov. 1, 2010
  • pp: 1234–1243

Combined influences of chromatic aberration and scattering in depth-resolved two-photon fluorescence endospectroscopy

Yicong Wu and Xingde Li  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 4, pp. 1234-1243 (2010)
http://dx.doi.org/10.1364/BOE.1.001234


View Full Text Article

Enhanced HTML    Acrobat PDF (1090 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The influence of chromatic aberration of an objective lens in two-photon fluorescence (TPF) endospectroscopy of scattering media has been systematically investigated through both experiments and numerical simulations. Experiments were carried out on a uniform 3D scattering gelatin phantom embedded with TiO2 granules (to mimic tissue scattering) and fluorescein-tagged polystyrene beads. It was found that fluorescence spectral intensity and lineshape varied as a function of depth when measured with a gradient-index (GRIN) lens which has severe chromatic aberration. The spectral distortion caused by the chromatic aberration became diminishing as the imaging depth increased. Ray tracing analysis and Monte Carlo simulations were carried out to study the interplay of chromatic aberration and scattering in the depth-resolved TPF spectra. The simulation results suggest that the collected fluorescence signals from deeper layers included more out-of-focus photons that experienced a few or multiple scatterings, which diminish the influence of chromatic aberration on the measured TPF spectra. The simulated collection efficiencies of TPF at different wavelengths and depths can be used to properly recover the true depth-resolved TPF spectra of a relatively uniform scattering medium.

© 2010 OSA

OCIS Codes
(290.0290) Scattering : Scattering
(300.6420) Spectroscopy : Spectroscopy, nonlinear

ToC Category:
Microscopy

History
Original Manuscript: June 7, 2010
Revised Manuscript: September 21, 2010
Manuscript Accepted: October 22, 2010
Published: October 27, 2010

Virtual Issues
Advances in Optical Coherence Tomography, Photoacoustic Imaging, and Microscopy (2010) Biomedical Optics Express

Citation
Yicong Wu and Xingde Li, "Combined influences of chromatic aberration and scattering in depth-resolved two-photon fluorescence endospectroscopy," Biomed. Opt. Express 1, 1234-1243 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-4-1234


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. Y. C. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett. 22(17), 1323–1325 (1997). [CrossRef] [PubMed]
  3. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003). [CrossRef] [PubMed]
  4. M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004). [CrossRef] [PubMed]
  5. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004). [CrossRef] [PubMed]
  6. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005). [CrossRef] [PubMed]
  7. M. T. Myaing, D. J. MacDonald, and X. D. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006). [CrossRef] [PubMed]
  8. L. Fu, A. Jain, H. K. Xie, C. Cranfield, and M. Gu, “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror,” Opt. Express 14(3), 1027–1032 (2006). [CrossRef] [PubMed]
  9. Y. C. Wu, J. F. Xi, M. J. Cobb, and X. D. Li, “Scanning fiber-optic nonlinear endomicroscopy with miniature aspherical compound lens and multimode fiber collector,” Opt. Lett. 34(7), 953–955 (2009). [CrossRef] [PubMed]
  10. Y. C. Wu, Y. X. Leng, J. F. Xi, and X. D. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express 17(10), 7907–7915 (2009). [CrossRef] [PubMed]
  11. H. Cang, T. Sun, Z. Y. Li, J. Y. Chen, B. J. Wiley, Y. N. Xia, and X. D. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30(22), 3048–3050 (2005). [CrossRef] [PubMed]
  12. X. M. Liu, M. J. Cobb, Y. C. Chen, M. B. Kimmey, and X. D. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004). [CrossRef] [PubMed]
  13. A. K. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, “Sources of contrast in confocal reflectance imaging,” Appl. Opt. 35(19), 3441–3446 (1996). [CrossRef]
  14. J. M. Schmitt and K. Ben-Letaief, “Efficient Monte Carlo simulation of confocal microscopy in biological tissue,” J. Opt. Soc. Am. A 13(5), 952–961 (1996). [CrossRef] [PubMed]
  15. A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 39(7), 1194–1201 (2000). [CrossRef] [PubMed]
  16. E. Beaurepaire, M. Oheim, and J. Mertz, “Ultra-deep two-photon fluorescence excitation in turbid media,” Opt. Commun. 188(1-4), 25–29 (2001). [CrossRef]
  17. J. N. Qu, C. Macaulay, S. Lam, and B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt. 33(31), 7397–7405 (1994). [CrossRef] [PubMed]
  18. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt. 6(4), 385–396 (2001). [CrossRef] [PubMed]
  19. T. Collier, D. Arifler, A. Malpica, M. Follen, and R. Richards-Kortum, “Determination of epithelial tissue scattering coefficient using confocal microscopy,” IEEE J. Quantum Electron. 9(2), 307–313 (2003). [CrossRef]
  20. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9(3), 511–522 (2004). [CrossRef] [PubMed]
  21. K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited