OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 5 — Dec. 1, 2010
  • pp: 1247–1258

Characterizing dual wavelength polarimetry through the eye for monitoring glucose

Bilal H. Malik and Gerard L. Coté  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 5, pp. 1247-1258 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1169 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Diabetes is an insidious disease that afflicts millions of people worldwide and typically requires the person with the disease to monitor their blood sugar level via finger or forearm sticks multiple times daily. Therefore, the ability to noninvasively measure glucose would be a significant advancement for the diabetic community. The use of optically polarized light passed through the anterior chamber of the eye is one proposed noninvasive approach for glucose monitoring. However, the birefringence of the cornea and the difficulty in coupling the light across the eye have been major drawbacks toward realizing this approach. A dual wavelength optical polarimetric approach has been proposed as a means to potentially overcome the birefringence noise but has never been fully characterized. Therefore, in this paper an optical model has been developed along with experiments performed on New Zealand White rabbit eyes for characterizing the light path and corneal birefringence at two different wavelengths as they are passed through the anterior chamber of the eye. The results show that, without index matching, it is possible to couple the light in and out of the eye but only across a very limited range otherwise the light does not come back out of the eye. It was also shown that there is potential to use a dual wavelength approach to accommodate the birefringence noise of the cornea in the presence of eye motion. These results will be used to help guide the final design of the polarimetric system for use in noninvasive monitoring of glucose in vivo.

© 2010 OSA

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(050.2555) Diffraction and gratings : Form birefringence
(330.4875) Vision, color, and visual optics : Optics of physiological systems

ToC Category:
Noninvasive Optical Diagnostics

Original Manuscript: August 17, 2010
Revised Manuscript: July 10, 2010
Manuscript Accepted: October 22, 2010
Published: October 28, 2010

Bilal H. Malik and Gerard L. Coté, "Characterizing dual wavelength polarimetry through the eye for monitoring glucose," Biomed. Opt. Express 1, 1247-1258 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. D. Evans, L. Gnudi, O. J. Rolinski, D. J. S. Birch, and J. C. Pickup, “Non-invasive glucose monitoring by NAD(P)H autofluorescence spectroscopy in fibroblasts and adipocytes: a model for skin glucose sensing,” Diabetes Technol. Ther. 5(5), 807–816 (2003). [CrossRef] [PubMed]
  2. K. M. Katika and L. Pilon, “Feasibility analysis of an epidermal glucose sensor based on time-resolved fluorescence,” Appl. Opt. 46(16), 3359–3368 (2007). [CrossRef] [PubMed]
  3. J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002). [CrossRef]
  4. A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005). [CrossRef] [PubMed]
  5. Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003). [CrossRef] [PubMed]
  6. L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. B. Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006). [CrossRef] [PubMed]
  7. J. J. Burmeister, M. A. Arnold, and G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000). [CrossRef] [PubMed]
  8. A. M. Helwig, M. A. Arnold, and G. W. Small, “Evaluation of Kromoscopy: resolution of glucose and urea,” Appl. Opt. 39(25), 4715–4720 (2000). [CrossRef] [PubMed]
  9. R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26(13), 992–994 (2001). [CrossRef] [PubMed]
  10. V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, and R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006). [PubMed]
  11. V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008). [CrossRef] [PubMed]
  12. B. Rabinovitch, W. F. March, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations,” Diabetes Care 5(3), 254–258 (1982). [CrossRef] [PubMed]
  13. W. F. March, B. Rabinovitch, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5(3), 259–265 (1982). [CrossRef] [PubMed]
  14. G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng. 39(7), 752–756 (1992). [CrossRef] [PubMed]
  15. M. J. Goetz, Jr., “Microdegree Polarimetry for Glucose Detection,” M.S. Thesis, University of Connecticut, Storrs, CT 06269 (1992).
  16. T. W. King, G. L. Coté, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single Pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994). [CrossRef]
  17. B. D. Cameron and G. L. Cóte, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44(12), 1221–1227 (1997). [CrossRef] [PubMed]
  18. B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt. 15(1), 017002 (2010). [CrossRef] [PubMed]
  19. C. Chou, C. Y. Han, W. C. Kuo, Y. C. Huang, C. M. Feng, and J. C. Shyu, “Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter,” Appl. Opt. 37(16), 3553–3557 (1998). [CrossRef] [PubMed]
  20. R. R. Ansari, S. Böckle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004). [CrossRef] [PubMed]
  21. R. Rawer, W. Stork, and C. F. Kreiner, “Non-invasive polarimetric measurement of glucose concentration in the anterior chamber of the eye,” Graefes Arch. Clin. Exp. Ophthalmol. 242(12), 1017–1023 (2004). [CrossRef] [PubMed]
  22. G. Spanner and R. Niessner, “Noninvasive determination of blood constituents using an array of modulated laser diodes and a photoacoustic sensor head,” Anal. Bioanal. Chem. 355(3-4), 327–328 (1996). [CrossRef] [PubMed]
  23. H. A. MacKenzie, H. S. Ashton, Y. C. Shen, J. Lindberg, P. Rae, K. M. Quan, and S. Spiers, “Blood glucose measurements by photoacoustics,” in Biomedical Optical Spectroscopy and Diagnostics / Therapeutic Laser Applications, E. Sevick-Muraca and J. Izatt, eds., Vol. 22 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper BTuC1. http://www.opticsinfobase.org/abstract.cfm?URI=BOSD-1998-BTuC1
  24. R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007). [CrossRef] [PubMed]
  25. V. V. Tuchin, “Light scattering study of tissues,” Phys.-Usp. 40(5), 495–515 (1997). [CrossRef]
  26. B. D. Cameron, “The application of polarized light to biomedical diagnostics and monitoring,” Ph.D. Dissertation, Texas A&M University, College Station, TX 77843 (2000).
  27. S. Pohjola, “The glucose content of the aqueous humor in man,” Acta Ophthalmol. (Copenh.) 88, 11–80 (1966).
  28. B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001). [CrossRef] [PubMed]
  29. E. Hecht, Optics (Addison Wesley, Reading, MA, 2001).
  30. D. J. Donohue, B. J. Stoyanov, R. L. McCally, and R. A. Farrell, “Numerical modeling of the cornea’s lamellar structure and birefringence properties,” J. Opt. Soc. Am. A 12(7), 1425–1438 (1995). [CrossRef] [PubMed]
  31. R. A. Farrell, D. Rouseff, and R. L. McCally, “Propagation of polarized light through two- and three-layer anisotropic stacks,” J. Opt. Soc. Am. A 22(9), 1981–1992 (2005). [CrossRef] [PubMed]
  32. M. Born, and E. Wolf, “Form Birefringence,” in Principles of Optics (Cambridge University Press, Cambridge, UK, 1998).
  33. D. Brewster, “Experiments on the Depolarisation of Light as Exhibited by Various Mineral, Animal, and Vegetable Bodies, with a Reference of the Phenomena to the General Principles of Polarisation,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 105(0), 29–53 (1815). [CrossRef]
  34. G. P. Misson, “Circular polarization biomicroscopy: a method for determining human corneal stromal lamellar organization in vivo,” Ophthalmic Physiol. Opt. 27(3), 256–264 (2007). [CrossRef] [PubMed]
  35. J. W. Jaronski and H. T. Kasprzak, “Linear birefringence measurements of the in vitro human cornea,” Ophthalmic Physiol. Opt. 23(4), 361–369 (2003). [CrossRef] [PubMed]
  36. C. K. Hitzenberger, E. Götzinger, and M. Pircher, “Birefringence properties of the human cornea measured with polarization sensitive optical coherence tomography,” Bull. Soc. Belge Ophtalmol. 302(302), 153–168 (2006). [PubMed]
  37. A. Stanworth and E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34(4), 201–211 (1950). [CrossRef] [PubMed]
  38. A. Stanworth and E. J. Naylor, “Polarized light studies of the cornea,” J. Exp. Biol. 30, 160–163 (1953).
  39. G. J. Van Blokland and S. C. Verhelst, “Corneal polarization in the living human eye explained with a biaxial model,” J. Opt. Soc. Am. A 4(1), 82–90 (1987). [CrossRef] [PubMed]
  40. R. W. Knighton and X. R. Huang, “Linear birefringence of the central human cornea,” Invest. Ophthalmol. Vis. Sci. 43(1), 82–86 (2002). [PubMed]
  41. R. W. Knighton, X.-R. Huang, and L. A. Cavuoto, “Corneal birefringence mapped by scanning laser polarimetry,” Opt. Express 16(18), 13738–13751 (2008). [CrossRef] [PubMed]
  42. L. J. Bour and N. J. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21(9), 1413–1421 (1981). [CrossRef] [PubMed]
  43. B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15(3), 037012 (2010). [CrossRef] [PubMed]
  44. B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999). [CrossRef] [PubMed]
  45. D. Atchison, and G. Smith, Optics of the Human Eye (Butterworth Heinemann, Oxford, UK, 2000).
  46. H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997). [CrossRef] [PubMed]
  47. D. Maurice, “The Charles Prentice award lecture 1989: the physiology of tears,” Optom. Vis. Sci. 67(6), 391–399 (1990). [CrossRef] [PubMed]
  48. E. Sokolova, B. Kruizinga, and I. Golubenko, “Recording of concave diffraction gratings in a two-step process using spatially incoherent light,” Opt. Eng. 43(11), 2613–2622 (2004). [CrossRef]
  49. K. B. Doyle, J. M. Hoffman, V. L. Genberg, and G. J. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).
  50. T. J. Y. Wang and F. A. Bettelheim, “Comparative birefringence of cornea,” Comp. Biochem. Physiol. Comp. Physiol. 51(11A), 89–94 (1975). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited