OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 5 — Dec. 1, 2010
  • pp: 1259–1277

Bioluminescence tomography with Gaussian prior

Hao Gao, Hongkai Zhao, Wenxiang Cong, and Ge Wang  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 5, pp. 1259-1277 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1406 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Parameterizing the bioluminescent source globally in Gaussians provides several advantages over voxel representation in bioluminescence tomography. It is mathematically unique to recover Gaussians [Med. Phys. 31(8), 2289 (2004)] and practically sufficient to approximate various shapes by Gaussians in diffusive medium. The computational burden is significantly reduced since much fewer unknowns are required. Besides, there are physiological evidences that the source can be modeled by Gaussians. The simulations show that the proposed model and algorithm significantly improves accuracy and stability in the presence of Gaussian or non- Gaussian sources, noisy data or the optical background mismatch. It is also validated through in vivo experimental data.

© 2010 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(110.6960) Imaging systems : Tomography
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:
Image Reconstruction and Inverse Problems

Original Manuscript: September 20, 2010
Revised Manuscript: October 16, 2010
Manuscript Accepted: October 27, 2010
Published: October 29, 2010

Hao Gao, Hongkai Zhao, Wenxiang Cong, and Ge Wang, "Bioluminescence tomography with Gaussian prior," Biomed. Opt. Express 1, 1259-1277 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Contag and B. D. Ross, “It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J. Magn. Reson. Imaging 16(4), 378–387 (2002). [PubMed]
  2. G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 299, 566 (2003).
  3. G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31(8), 2289–2299 (2004). [PubMed]
  4. G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14(17), 7801–7809 (2006). [PubMed]
  5. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13(18), 6756–6771 (2005). [PubMed]
  6. G. Wang, X. Qian, W. Cong, H. Shen, Y. Li, W. Han, K. Durairaj, M. Jiang, T. Zhou, and J. Cheng, “Recent development in bioluminescence tomography,” Curr. Med. Imaging Rev. 2, 453–457 (2006).
  7. G. Wang, H. Shen, K. Durairaj, X. Qian, and W. Cong, “The first bioluminescence tomography system for simultaneous acquisition of multi-view and multi-spectral data,” Int. J. Biomed. Imaging 2006, 1–8 (2006).
  8. X. Gu, Q. Zhang, L. Larcom, and H. Jiang, “Three-dimensional bioluminescence tomography with model-based reconstruction,” Opt. Express 12(17), 3996–4000 (2004). [PubMed]
  9. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005). [PubMed]
  10. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31(3), 365–367 (2006). [PubMed]
  11. C. Kuo, O. Coquoz, T. Troy, D. Zwarg, and B. Rice, “Bioluminescent tomography for in vivo localization and quantification of luminescent sources from a multiple-view imaging system,” Mol. Imaging 4, 370 (2005).
  12. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005). [PubMed]
  13. Y. Lv, J. Tian, W. Cong, and G. Wang, “Experimental study on bioluminescence tomography with multimodality fusion,” Int. J. Biomed. Imaging 2007, 86741 (2007). [PubMed]
  14. H. Gao and H. K. Zhao, “Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 regularization,” Opt. Express 18(3), 1854–1871 (2010). [PubMed]
  15. H. Gao and H. K. Zhao, “Multilevel bioluminescence tomography based on radiative transfer equation part 2: total variation and l1 data fidelity,” Opt. Express 18(3), 2894–2912 (2010). [PubMed]
  16. J. Liu, A. Li, A. E. Cerussi, and B. J. Tromberg, “Parametric diffuse optical imaging in reflectance geometry,” IEEE Sel. Top. Quantum Electron. 16, 555–564 (2010).
  17. K. M. Case, and P. F. P. F. Zweifel, Linear Transport Theory (Addison-Wesley Educational Publishers Inc., 1967).
  18. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, 1978).
  19. E. E. Lewis, and W. F. Miller, Computational Methods of Neutron Transport (Wiley, 1984).
  20. H. Gao and H. K. Zhao, “A fast forward solver of radiative transfer equation,” Transp. Theory Stat. Phys. 38, 149–192 (2009).
  21. H. Shen and G. Wang, “A tetrahedron-based inhomogeneous Monte Carlo optical simulator,” Phys. Med. Biol. 55(4), 947–962 (2010). [PubMed]
  22. W. Cong, H. Shen, A. Cong, Y. Wang, and G. Wang, “Modeling photon propagation in biological tissues using a generalized Delta-Eddington phase function,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(5 Pt 1), 051913 (2007). [PubMed]
  23. A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).
  24. A. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
  25. S. Boyd, and L. Vandenberghe, Convex Optimization (Cambridge university press, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited